Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36987332

RESUMO

Materials providing heat dissipation and electrical insulation are required for many electronic and medical devices. Polymer composites with hexagonal boron nitride (hBN) may fulfil such requirements. The focus of this study is to compare composites with hBN fabricated by injection moulding (IM), powder bed fusion (PBF) and casting. The specimens were characterised by measuring thermal conductivity, tensile properties, hardness and hBN particle orientation. A thermoplastic polyurethane (TPU) was selected as the matrix for IM and PBF, and an epoxy was the matrix for casting. The maximum filler weight fractions were 65%, 55% and 40% for IM, casting and PBF, respectively. The highest thermal conductivity (2.1 W/m∙K) was measured for an IM specimen with 65 wt% hBN. However, cast specimens had the highest thermal conductivity for a given hBN fraction. The orientation of hBN platelets in the specimens was characterised by X-ray diffraction and compared with numerical simulations. The measured thermal conductivities were discussed by comparing them with four models from the literature (the effective medium approximation model, the Ordóñez-Miranda model, the Sun model, and the Lewis-Nielsen model). These models predicted quite different thermal conductivities vs. filler fraction. Adding hBN increased the hardness and tensile modulus, and the tensile strength at high hBN fractions. The strength had a minimum as the function of filler fraction, while the strain at break decreased. These trends can be explained by two mechanisms which occur when adding hBN: reinforcement and embrittlement.

2.
ACS Appl Mater Interfaces ; 10(26): 22218-22225, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29883097

RESUMO

Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...