Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 9: 337, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27391402

RESUMO

BACKGROUND: Healthcare associated infections (HAI) with multidrug-resistant (MDR) bacteria continue to be a global threat, highlighting an urgent need for novel antibiotics. In this study, we assessed the potential of free fatty acids and cholesteryl esters that form part of the innate host defense as novel antibacterial agents for use against MDR bacteria. METHODS: Liposomes of six different phospholipid mixtures were employed as carrier for six different fatty acids and four different cholesteryl esters. Using a modified MIC assay based on DNA quantification with the fluoroprobe Syto9, formulations were tested against Gram-positive and Gram-negative bacteria implicated in HAI. Formulations with MIC values in the low µg/mL range were further subjected to determination of minimal bactericidal activity, hemolysis assay with sheep erythrocytes, and cytotoxicity testing with the human liver cell line HepG2. The potential for synergistic activity with a standard antibiotic was also probed. RESULTS: Palmitic acid and stearic acid prepared in carrier 4 (PA4 and SA4, respectively) were identified as most active lipids (MIC against MDR Staphylococcus epidermidis was 0.5 and 0.25 µg/mL, respectively; MIC against vancomycin resistant Enterococcus faecalis (VRE) was 2 and 0.5 µg/mL, respectively). Cholesteryl linoleate formulated with carrier 3 (CL3) exhibited activity against the S. epidermidis strain (MIC 1 µg/mL) and a Pseudomonas aeruginosa strain (MIC 8 µg/mL) and lowered the vancomycin MIC for VRE from 32-64 µg/mL to as low as 4 µg/mL. At 90 µg/mL PA4, SA4, and CL3 effected less than 5 % hemolysis over 3 h and PA4 and CL3 did not exhibit significant cytotoxic activity against HepG2 cells when applied at 100 µg/mL over 48 h. CONCLUSIONS: Our results showed that selected fatty acids and cholesteryl esters packaged with phospholipids exhibit antibacterial activity against Gram-positive and Gram-negative bacteria and may augment the activity of antibiotics. Bactericidal activity could be unlinked from hemolytic and cytotoxic activity and the type of phospholipid carrier greatly influenced the activity. Thus, fatty acids and cholesteryl esters packaged in liposomes may have potential as novel lipophilic antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Ésteres do Colesterol/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Ácidos Graxos não Esterificados/farmacologia , Lipossomos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Animais , Infecção Hospitalar/tratamento farmacológico , DNA Bacteriano/análise , DNA Bacteriano/genética , Combinação de Medicamentos , Composição de Medicamentos , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Eritrócitos/efeitos dos fármacos , Corantes Fluorescentes , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Compostos Orgânicos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ovinos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crescimento & desenvolvimento , Vancomicina/farmacologia
2.
Bioorg Med Chem Lett ; 23(4): 975-8, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23313243

RESUMO

A major liability of existing nicotine vaccine candidates is the wide variation in anti-nicotine immune responses among clinical trial participants. In order to address this liability, significant emphasis has been directed at evaluating adjuvants and delivery systems that confer more robust potentiation of the anti-nicotine immune response. Toward that end, we have initiated work that seeks to exploit the adjuvant effect of liposomes, with or without Toll-like receptor agonist(s). The results of the murine immunization study described herein support the hypothesis that a liposomal nicotine vaccine formulation may provide a means for addressing the immunogenicity challenge.


Assuntos
Nicotina/imunologia , Vacinas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Humanos , Lipossomos/administração & dosagem , Camundongos , Vacinas/administração & dosagem
3.
J Immunol ; 181(6): 4177-87, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18768875

RESUMO

Mucosal surfaces provide first-line defense against microbial invasion through their complex secretions. The antimicrobial activities of proteins in these secretions have been well delineated, but the contributions of lipids to mucosal defense have not been defined. We found that normal human nasal fluid contains all major lipid classes (in micrograms per milliliter), as well as lipoproteins and apolipoprotein A-I. The predominant less polar lipids were myristic, palmitic, palmitoleic, stearic, oleic, and linoleic acid, cholesterol, and cholesteryl palmitate, cholesteryl linoleate, and cholesteryl arachidonate. Normal human bronchioepithelial cell secretions exhibited a similar lipid composition. Removal of less-polar lipids significantly decreased the inherent antibacterial activity of nasal fluid against Pseudomonas aeruginosa, which was in part restored after replenishing the lipids. Furthermore, lipids extracted from nasal fluid exerted direct antibacterial activity in synergism with the antimicrobial human neutrophil peptide HNP-2 and liposomal formulations of cholesteryl linoleate and cholesteryl arachidonate were active against P. aeruginosa at physiological concentrations as found in nasal fluid and exerted inhibitory activity against other Gram-negative and Gram-positive bacteria. These data suggest that host-derived lipids contribute to mucosal defense. The emerging concept of host-derived antimicrobial lipids unveils novel roads to a better understanding of the immunology of infectious diseases.


Assuntos
Antibacterianos/imunologia , Ácidos Araquidônicos/fisiologia , Ésteres do Colesterol/metabolismo , Mucosa Nasal/imunologia , Mucosa Nasal/microbiologia , Antibacterianos/química , Antibacterianos/farmacologia , Ácidos Araquidônicos/química , Ácidos Araquidônicos/deficiência , Células Cultivadas , Ésteres do Colesterol/química , Ésteres do Colesterol/farmacologia , Enterobacter cloacae/crescimento & desenvolvimento , Enterobacter cloacae/imunologia , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/imunologia , Humanos , Imunidade Inata , Lipossomos/imunologia , Lipossomos/metabolismo , Mucosa Nasal/química , Mucosa Nasal/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/imunologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia
4.
J Biol Chem ; 277(13): 10973-81, 2002 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-11788608

RESUMO

Coenzyme Q (Q) is an essential component of the mitochondrial respiratory chain in eukaryotic cells but also is present in other cellular membranes where it acts as an antioxidant. Because Q synthesis machinery in Saccharomyces cerevisiae is located in the mitochondria, the intracellular distribution of Q indicates the existence of intracellular Q transport. In this study, the uptake of exogenous Q(6) by yeast and its transport from the plasma membrane to mitochondria was assessed in both wild-type and in Q-less coq7 mutants derived from four distinct laboratory yeast strains. Q(6) supplementation of medium containing ethanol, a non-fermentable carbon source, rescued growth in only two of the four coq7 mutant strains. Following culture in medium containing dextrose, the added Q(6) was detected in the plasma membrane of each of four coq7 mutants tested. This detection of Q(6) in the plasma membrane was corroborated by measuring ascorbate stabilization activity, as catalyzed by NADH-ascorbate free radical reductase, a transmembrane redox activity that provides a functional assay of plasma membrane Q(6). These assays indicate that each of the four coq7 mutant strains assimilate exogenous Q(6) into the plasma membrane. The two coq7 mutant strains rescued by Q(6) supplementation for growth on ethanol contained mitochondrial Q(6) levels similar to wild type. However, the content of Q(6) in mitochondria from the non-rescued strains was only 35 and 8%, respectively, of that present in the corresponding wild-type parental strains. In yeast strains rescued by exogenous Q(6), succinate-cytochrome c reductase activity was partially restored, whereas non-rescued strains contained very low levels of activity. There was a strong correlation between mitochondrial Q(6) content, succinate-cytochrome c reductase activity, and steady state levels of the cytochrome c(1) polypeptide. These studies show that transport of extracellular Q(6) to the mitochondria operates in yeast but is strain-dependent. When Q biosynthesis is disrupted in yeast strains with defects in the intracellular transport of exogenous Q, the bc(1) complex is unstable. These results indicate that delivery of exogenous Q(6) to mitochondria is required fore activity and stability of the bc(1) complex in yeast coq mutants.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Ubiquinona/metabolismo , Ácido Ascórbico/metabolismo , Membrana Celular/metabolismo , Meios de Cultura , Estabilidade Enzimática , Mitocôndrias/enzimologia , Transporte Proteico , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ubiquinona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...