Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664338

RESUMO

This study aimed at providing a route towards the production of a novel exopolysaccharide (EPS) from fermented bamboo shoot-isolated Lactobacillus fermentum. A lactic acid bacteria strain, with high EPS production ability, was isolated from fermented bamboo shoots. This strain, R-49757, was identified in the BCCM/LMG Bacteria Collection, Ghent University, Belgium by the phenylalanyl-tRNA synthetase gene sequencing method, and it was named Lb. fermentum MC3. The molecular mass of the EPS measured via gel permeation chromatography was found to be 9.85 × 104 Da. Moreover, the monosaccharide composition in the EPS was analyzed by gas chromatography-mass spectrometry. Consequently, the EPS was discovered to be a heteropolysaccharide with the appearance of two main sugars-D-glucose and D-mannose-in the backbone. The results of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance spectroscopy analyses prove the repeating unit of this polysaccharide to be [→6)-ß-D-Glcp-(1→3)-ß-D-Manp-(1→6)-ß-D-Glcp-(1→]n, which appears to be a new EPS. The obtained results open up an avenue for the production of novel EPSs for biomedical applications.

2.
ACS Omega ; 5(51): 33387-33394, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403301

RESUMO

This study aims at producing exopolysaccharides (EPS) from a lactic acid bacterial strain. The soybean whey-isolated Lactobacillus plantarum W1 (EPS-W1), which belongs to genus Lactobacillus, is identified using the phenylalanyl-tRNA sequencing method. Of all the examined strains, R-49778 (as numbered by BCCM/LMG Bacteria Collection, Ghent University, Belgium) showed the highest capability of producing exopolysaccharides. Structural characterization revealed a novel exopolysaccharide consisting of repeating units of →6)-d-Glcp-(1→; →3)-d-Manp-(1→; →3)-d-Glcp-(1→ and a branch of →6)-d-Manp-(1→; →2)-d-Glcp-(1→. This discovery opens up avenues for the production of EPS for food industries, functional foods, and biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...