Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Bioinform ; 4: 1306244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501111

RESUMO

Introduction: DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. Methods: Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. Results: Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. Conclusion: These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.

2.
Cell Death Dis ; 14(2): 99, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765037

RESUMO

Anaplastic Thyroid Cancer (ATC) is the most aggressive and de-differentiated subtype of thyroid cancer. Many studies hypothesized that ATC derives from Differentiated Thyroid Carcinoma (DTC) through a de-differentiation process triggered by specific molecular events still largely unknown. E2F7 is an atypical member of the E2F family. Known as cell cycle inhibitor and keeper of genomic stability, in specific contexts its function is oncogenic, guiding cancer progression. We performed a meta-analysis on 279 gene expression profiles, from 8 Gene Expression Omnibus patient samples datasets, to explore the causal relationship between DTC and ATC. We defined 3 specific gene signatures describing the evolution from normal thyroid tissue to DTC and ATC and validated them in a cohort of human surgically resected ATCs collected in our Institution. We identified E2F7 as a key player in the DTC-ATC transition and showed in vitro that its down-regulation reduced ATC cells' aggressiveness features. RNA-seq and ChIP-seq profiling allowed the identification of the E2F7 specific gene program, which is mainly related to cell cycle progression and DNA repair ability. Overall, this study identified a signature describing DTC de-differentiation toward ATC subtype and unveiled an E2F7-dependent transcriptional program supporting this process.


Assuntos
Adenocarcinoma , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Adenocarcinoma/genética , Diferenciação Celular/genética , Oncogenes/genética , Fator de Transcrição E2F7/genética
3.
Nat Commun ; 13(1): 7973, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581621

RESUMO

Elevated body mass index (BMI) is heritable and associated with many health conditions that impact morbidity and mortality. The study of the genetic association of BMI across a broad range of common disease conditions offers the opportunity to extend current knowledge regarding the breadth and depth of adiposity-related diseases. We identify 906 (364 novel) and 41 (6 novel) genome-wide significant loci for BMI among participants of European (N~1.1 million) and African (N~100,000) ancestry, respectively. Using a BMI genetic risk score including 2446 variants, 316 diagnoses are associated in the Million Veteran Program, with 96.5% showing increased risk. A co-morbidity network analysis reveals seven disease communities containing multiple interconnected diseases associated with BMI as well as extensive connections across communities. Mendelian randomization analysis confirms numerous phenotypes across a breadth of organ systems, including conditions of the circulatory (heart failure, ischemic heart disease, atrial fibrillation), genitourinary (chronic renal failure), respiratory (respiratory failure, asthma), musculoskeletal and dermatologic systems that are deeply interconnected within and across the disease communities. This work shows that the complex genetic architecture of BMI associates with a broad range of major health conditions, supporting the need for comprehensive approaches to prevent and treat obesity.


Assuntos
Estudo de Associação Genômica Ampla , Fenômica , Humanos , Índice de Massa Corporal , Obesidade/genética , Obesidade/complicações , Genômica , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único
4.
Sci Rep ; 12(1): 14914, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050444

RESUMO

Understanding the genetic relationships between human disorders could lead to better treatment and prevention strategies, especially for individuals with multiple comorbidities. A common resource for studying genetic-disease relationships is the GWAS Catalog, a large and well curated repository of SNP-trait associations from various studies and populations. Some of these populations are contained within mega-biobanks such as the Million Veteran Program (MVP), which has enabled the genetic classification of several diseases in a large well-characterized and heterogeneous population. Here we aim to provide a network of the genetic relationships among diseases and to demonstrate the utility of quantifying the extent to which a given resource such as MVP has contributed to the discovery of such relations. We use a network-based approach to evaluate shared variants among thousands of traits in the GWAS Catalog repository. Our results indicate many more novel disease relationships that did not exist in early studies and demonstrate that the network can reveal clusters of diseases mechanistically related. Finally, we show novel disease connections that emerge when MVP data is included, highlighting methodology that can be used to indicate the contributions of a given biobank.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Bancos de Espécimes Biológicos , Comorbidade , Simulação por Computador , Estudo de Associação Genômica Ampla/métodos , Humanos , Fenótipo
5.
NAR Cancer ; 4(3): zcac024, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35910692

RESUMO

Malignant pleural mesothelioma (MPM) is a rare and incurable cancer, which incidence is increasing in many countries. MPM escapes the classical genetic model of cancer evolution, lacking a distinctive genetic fingerprint. Omics profiling revealed extensive heterogeneity failing to identify major vulnerabilities and restraining development of MPM-oriented therapies. Here, we performed a multilayered analysis based on a functional genome-wide CRISPR/Cas9 screening integrated with patients molecular and clinical data, to identify new non-genetic vulnerabilities of MPM. We identified a core of 18 functionally-related genes as essential for MPM cells. The chromatin reader KAP1 emerged as a dependency of MPM. We showed that KAP1 supports cell growth by orchestrating the expression of a G2/M-specific program, ensuring mitosis correct execution. Targeting KAP1 transcriptional function, by using CDK9 inhibitors resulted in a dramatic loss of MPM cells viability and shutdown of the KAP1-mediated program. Validation analysis on two independent MPM-patients sets, including a consecutive, retrospective cohort of 97 MPM, confirmed KAP1 as new non-genetic dependency of MPM and proved the association of its dependent gene program with reduced patients' survival probability. Overall these data: provided new insights into the biology of MPM delineating KAP1 and its target genes as building blocks of its clinical aggressiveness.

6.
Sci Rep ; 12(1): 12018, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835798

RESUMO

A better understanding of the sequential and temporal aspects in which diseases occur in patient's lives is essential for developing improved intervention strategies that reduce burden and increase the quality of health services. Here we present a network-based framework to study disease relationships using Electronic Health Records from > 9 million patients in the United States Veterans Health Administration (VHA) system. We create the Temporal Disease Network, which maps the sequential aspects of disease co-occurrence among patients and demonstrate that network properties reflect clinical aspects of the respective diseases. We use the Temporal Disease Network to identify disease groups that reflect patterns of disease co-occurrence and the flow of patients among diagnoses. Finally, we define a strategy for the identification of trajectories that lead from one disease to another. The framework presented here has the potential to offer new insights for disease treatment and prevention in large health care systems.


Assuntos
Veteranos , Atenção à Saúde , Registros Eletrônicos de Saúde , Humanos , Estados Unidos/epidemiologia , United States Department of Veterans Affairs
7.
bioRxiv ; 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33907750

RESUMO

Identification of host factors contributing to replication of viruses and resulting disease progression remains a promising approach for development of new therapeutics. Here, we evaluated 6710 clinical and preclinical compounds targeting 2183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target and cell interactome networking produced cellular networks important for infection. This analysis revealed 389 small molecules, >12 scaffold classes and 813 host targets with micromolar to low nanomolar activities. From these classes, representatives were extensively evaluated for mechanism of action in stable and primary human cell models, and additionally against Beta and Delta SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of novel host factor dependencies and treatments for viral diseases.

8.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33906951

RESUMO

The COVID-19 pandemic has highlighted the need to quickly and reliably prioritize clinically approved compounds for their potential effectiveness for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs experimentally screened in VeroE6 cells, as well as the list of drugs in clinical trials that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that no single predictive algorithm offers consistently reliable outcomes across all datasets and metrics. This outcome prompted us to develop a multimodal technology that fuses the predictions of all algorithms, finding that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We screened in human cells the top-ranked drugs, obtaining a 62% success rate, in contrast to the 0.8% hit rate of nonguided screenings. Of the six drugs that reduced viral infection, four could be directly repurposed to treat COVID-19, proposing novel treatments for COVID-19. We also found that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these network drugs rely on network-based mechanisms that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , Biologia de Sistemas/métodos , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/uso terapêutico , Chlorocebus aethiops , Bases de Dados de Produtos Farmacêuticos , Humanos , Redes Neurais de Computação , Ligação Proteica , Células Vero , Proteínas Virais/metabolismo
9.
Nat Food ; 2(3): 143-155, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37117448

RESUMO

Polyphenols, natural products present in plant-based foods, play a protective role against several complex diseases through their antioxidant activity and by diverse molecular mechanisms. Here we develop a network medicine framework to uncover mechanisms for the effects of polyphenols on health by considering the molecular interactions between polyphenol protein targets and proteins associated with diseases. We find that the protein targets of polyphenols cluster in specific neighbourhoods of the human interactome, whose network proximity to disease proteins is predictive of the molecule's known therapeutic effects. The methodology recovers known associations, such as the effect of epigallocatechin-3-O-gallate on type 2 diabetes, and predicts that rosmarinic acid has a direct impact on platelet function, representing a novel mechanism through which it could affect cardiovascular health. We experimentally confirm that rosmarinic acid inhibits platelet aggregation and α-granule secretion through inhibition of protein tyrosine phosphorylation, offering direct support for the predicted molecular mechanism. Our framework represents a starting point for mechanistic interpretation of the health effects underlying food-related compounds, allowing us to integrate into a predictive framework knowledge on food metabolism, bioavailability and drug interaction.

10.
ArXiv ; 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32550253

RESUMO

The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.

11.
Mult Scler ; 26(5): 609-615, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965895

RESUMO

Conventional reductionist approaches have guided most of our understanding in disease diagnostic and treatment. However, most diseases are not consequence of perturbations in a single protein or metabolite, but rather of the effect that these perturbations have in their cellular context. The emerging field of network medicine offers a set of tools to explore molecular networks and to retrieve insights about mechanisms of different diseases. The study of the protein interactome, the map of physical interactions among human proteins, revealed that disease proteins tend to interact with each other, linking diseases to well-defined interactome neighborhoods. These disease-associated neighborhoods have been defined as disease modules, and they can uncover the biological significance of genes identified by genetic studies, reveal molecular mechanisms that connect different phenotypes, and help identify new pharmacological strategies for disease treatment. Therefore, network medicine offers a framework in which the complexity of different aspects of multiple sclerosis can be explored in an integrative fashion, which can ultimately provide insights about disease mechanisms and treatment.


Assuntos
Esclerose Múltipla , Medicina de Precisão , Mapas de Interação de Proteínas , Humanos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo
12.
Oncogene ; 38(42): 6801-6817, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31406246

RESUMO

Inhibitors of BET proteins (BETi) are anti-cancer drugs that have shown efficacy in pre-clinical settings and are currently in clinical trials for different types of cancer, including non-small cell lung cancer (NSCLC). Currently, no predictive biomarker is available to identify patients that may benefit from this treatment. To uncover the mechanisms of resistance to BETi, we performed a genome-scale CRISPR/Cas9 screening in lung cancer cells. We identified three Hippo pathway genes, LATS2, TAOK1, and NF2, as key determinants for sensitivity to BETi. The knockout of these genes induces resistance to BETi, by promoting TAZ nuclear localization and transcriptional activity. Conversely, TAZ expression promotes resistance to these drugs. We also showed that TAZ, YAP, and their partner TEAD are direct targets of BRD4 and that treatment with BETi downregulates their expression. Noticeably, molecular alterations in one or more of these genes are present in a large fraction of NSCLC patients and TAZ amplification or overexpression correlates with a worse outcome in lung adenocarcinoma. Our data define the central role of Hippo pathway in mediating resistance to BETi and provide a rationale for using BETi to counter-act YAP/TAZ-mediated pro-oncogenic activity.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Células A549 , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/patologia , Núcleo Celular/metabolismo , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/genética
13.
Poult Sci ; 98(9): 3963-3976, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30953072

RESUMO

The aim of this study was to investigate the impact of supplementation of a low protein diet on ceca microbiome and productive performances of broiler chickens. A total of 1,170 one-day-old male chicks (Ross 308) were divided in 2 diet groups and reared in the same conditions up to 42 D. Birds belonging to the control group were fed a basal diet. Birds belonging to the low protein group the basal diet with a reduced level of crude protein (-7%). Cecum contents from randomly selected birds were collected at 14 and 42 D within each diet group, submitted to DNA extraction and then tested by shotgun metagenomic sequencing. Abundances of species belonging to Actinobacteria and Proteobacteria were mainly affected by the diet as well as interaction between diet and time, while species belonging to Firmicutes and Cyanobacteria changed mainly according to the age of the birds. At family level, Lactobacillaceae significantly decreased in the low protein group up to 14 D. However, at the end of the rearing period the same family was significantly higher in the low protein group. The most abundant functional genes, represented by cystine desulfurase, alpha-galactosidase, and serine hydroxymethyltransferase, displayed comparable abundances in both diet groups, although significative differences were identified for less abundant functional genes at both sampling times. Birds fed control and low protein diets showed similar productive performances. However, in the finisher phase, feed conversion rate was significantly better in chickens fed the low protein diet. Overall, this study showed that a reduced intake of crude protein in broilers increases the abundance of Lactobacillaceae in the ceca over time and this seems to be linked to a better feed conversion rate between 36 and 42 D. A reduced intake of crude protein in chicken production can help to improve exploitation of edible resources, while reducing the emission of nitrogen pollutants in the environment.


Assuntos
Bactérias/genética , Galinhas/microbiologia , Dieta com Restrição de Proteínas/veterinária , Microbioma Gastrointestinal/fisiologia , Metagenoma , Ração Animal/análise , Animais , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Ceco/microbiologia , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Masculino , Fatores de Tempo
14.
Cancer ; 125(5): 712-725, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30480765

RESUMO

BACKGROUND: Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. METHODS: To understand the molecular bases of aneuploid acute myeloid leukemia (A-AML), this study examined the genomic profile in 42 A-AML cases and 35 euploid acute myeloid leukemia (E-AML) cases. RESULTS: A-AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E-AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A-AML, which was associated with a 3-gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A-AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E-AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. CONCLUSIONS: These findings indicate that aneuploidy-related and leukemia-specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Genômica/métodos , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneuploidia , Ciclo Celular , Bandeamento Cromossômico , Feminino , Dosagem de Genes , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteólise , Sequenciamento do Exoma , Adulto Jovem
15.
Nat Commun ; 9(1): 4514, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375513

RESUMO

We characterize different tumour types in search for multi-tumour drug targets, in particular aiming for drug repurposing and novel drug combinations. Starting from 11 tumour types from The Cancer Genome Atlas, we obtain three clusters based on transcriptomic correlation profiles. A network-based analysis, integrating gene expression profiles and protein interactions of cancer-related genes, allows us to define three cluster-specific signatures, with genes belonging to NF-κB signaling, chromosomal instability, ubiquitin-proteasome system, DNA metabolism, and apoptosis biological processes. These signatures have been characterized by different approaches based on mutational, pharmacological and clinical evidences, demonstrating the validity of our selection. Moreover, we define new pharmacological strategies validated by in vitro experiments that show inhibition of cell growth in two tumour cell lines, with significant synergistic effect. Our study thus provides a list of genes and pathways that could possibly be used, singularly or in combination, for the design of novel treatment strategies.


Assuntos
Redes Reguladoras de Genes , Genômica , Neoplasias/tratamento farmacológico , Mapas de Interação de Proteínas , Proteômica , Apoptose/genética , Instabilidade Cromossômica/genética , DNA/metabolismo , Reposicionamento de Medicamentos , Genes Neoplásicos , Ensaios de Triagem em Larga Escala , Humanos , Terapia de Alvo Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Transcriptoma , Ubiquitina/genética , Ubiquitina/metabolismo
16.
Int J Mol Sci ; 19(3)2018 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-29510530

RESUMO

Gastrointestinal stromal tumors (GIST) carrying the D842V activating mutation in the platelet-derived growth factor receptor alpha (PDGFRA) gene are a very rare subgroup of GIST (about 10%) known to be resistant to conventional tyrosine kinase inhibitors (TKIs) and to show an indolent behavior. In this study, we performed an integrated molecular characterization of D842V mutant GIST by whole-transcriptome and whole-exome sequencing coupled with protein-ligand interaction modelling to identify the molecular signature and any additional recurrent genomic event related to their clinical course. We found a very specific gene expression profile of D842V mutant tumors showing the activation of G-protein-coupled receptor (GPCR) signaling and a relative downregulation of cell cycle processes. Beyond D842V, no recurrently mutated genes were found in our cohort. Nevertheless, many private, clinically relevant alterations were found in each tumor (TP53, IDH1, FBXW7, SDH-complex). Molecular modeling of PDGFRA D842V suggests that the mutant protein binds imatinib with lower affinity with respect to wild-type structure, showing higher stability during the interaction with other type I TKIs (like crenolanib). D842V mutant GIST do not show any actionable recurrent molecular events of therapeutic significance, therefore this study supports the rationale of novel TKIs development that are currently being evaluated in clinical studies for the treatment of D842V mutant GIST.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Mutação de Sentido Incorreto , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Transcriptoma , Adulto , Idoso , Benzimidazóis/farmacologia , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Feminino , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Piperidinas/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Nucleic Acids Res ; 45(19): 11249-11267, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28981843

RESUMO

Aberrant reactivation of embryonic pathways is a common feature of cancer. RUNX2 is a transcription factor crucial during embryogenesis that is aberrantly reactivated in many tumors, including thyroid and breast cancer, where it promotes aggressiveness and metastatic spreading. Currently, the mechanisms driving RUNX2 expression in cancer are still largely unknown. Here we showed that RUNX2 transcription in thyroid and breast cancer requires the cooperation of three distantly located enhancers (ENHs) brought together by chromatin three-dimensional looping. We showed that BRD4 controls RUNX2 by binding to the newly identified ENHs and we demonstrated that the anti-proliferative effects of bromodomain inhibitors (BETi) is associated with RUNX2 transcriptional repression. We demonstrated that each RUNX2 ENH is potentially controlled by a distinct set of TFs and we identified c-JUN as the principal pivot of this regulatory platform. We also observed that accumulation of genetic mutations within these elements correlates with metastatic behavior in human thyroid tumors. Finally, we identified RAINs, a novel family of ENH-associated long non-coding RNAs, transcribed from the identified RUNX2 regulatory unit. Our data provide a new model to explain how RUNX2 expression is reactivated in thyroid and breast cancer and how cancer-driving signaling pathways converge on the regulation of this gene.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-jun/genética , Fatores de Transcrição/genética , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Elementos Facilitadores Genéticos/genética , Humanos , Células MCF-7 , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fatores de Transcrição/metabolismo
18.
Oncotarget ; 8(14): 23237-23245, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28423572

RESUMO

Changes in blood epigenetic age have been associated with several pathological conditions and have recently been described to anticipate cancer development. In this work, we analyze a publicly available leukocytes methylation dataset to evaluate the relation between DNA methylation age and the prospective development of specific types of cancer. We calculated DNA methylation age acceleration using five state-of-the-art estimators (three multi-site: Horvath, Hannum, Weidner; and two CpG specific: ELOV2 and FHL2) in a cohort including 845 subjects from the EPIC-Italy project and we compared 424 samples that remained cancer-free over the approximately ten years of follow-up with 235 and 166 subjects who developed breast and colorectal cancer, respectively. We show that the epigenetic age estimated from blood DNA methylation data is statistically significantly associated to future breast and male colorectal cancer development. These results are corroborated by survival analysis that shows significant association between age acceleration and cancer incidence suggesting that the chance of developing age-related diseases may be predicted by circulating epigenetic markers, with a dependence upon tumor type, sex and age estimator. These are encouraging results towards the non-invasive and perspective usage of epigenetic biomarkers.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Leucócitos/patologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Neoplasias Colorretais/patologia , Metilação de DNA , Epigenômica , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais
19.
Oncotarget ; 8(8): 12820-12830, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28086223

RESUMO

Colorectal cancer is among the leading causes of cancer death worldwide. Despite numerous molecular characterizations of the phenomenon, the exact dynamics of its onset and progression remain elusive. Colorectal cancer onset has been characterized by changes in DNA methylation profiles, that, owing to the stability of their patterns, are promising candidates to shed light on the molecular events laying at the base of this phenomenon.To exploit this stability and reinforce it, we conducted a meta-analysis on publicly available DNA methylation datasets generated on: normal colorectal, adenoma (ADE) and adenocarcinoma (CRC) samples using the Illumina 450k array, in the systems medicine frame, searching for tumor gene episignatures, to produce a carefully selected list of potential drivers, markers and targets of the disease. The analysis proceeds from a differential meta-analysis of the methylation profiles using an analytical pipeline recently developed by our group [1], through network reconstruction, topological and functional analyses, to finally highlight relevant epigenomic features. Our results show that genes already highlighted for their genetic or transcriptional alteration in colorectal cancer are also differentially methylated, reinforcing -regardless of the level of cellular control- their role in the complex of alterations involved in tumorigenesis.These findings were finally validated in an independent cohort from The Cancer Genome Atlas (TCGA).


Assuntos
Adenocarcinoma/genética , Neoplasias Colorretais/genética , Metilação de DNA/genética , Análise por Conglomerados , Humanos
20.
BMC Bioinformatics ; 17 Suppl 2: 16, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26821617

RESUMO

BACKGROUND: Interest in understanding the mechanisms that lead to a particular composition of the Gut Microbiota is highly increasing, due to the relationship between this ecosystem and the host health state. Particularly relevant is the study of the Relative Species Abundance (RSA) distribution, that is a component of biodiversity and measures the number of species having a given number of individuals. It is the universal behaviour of RSA that induced many ecologists to look for theoretical explanations. In particular, a simple stochastic neutral model was proposed by Volkov et al. relying on population dynamics and was proved to fit the coral-reefs and rain forests RSA. Our aim is to ascertain if this model also describes the Microbiota RSA and if it can help in explaining the Microbiota plasticity. RESULTS: We analyzed 16S rRNA sequencing data sampled from the Microbiota of three different animal species by Jeraldo et al. Through a clustering procedure (UCLUST), we built the Operational Taxonomic Units. These correspond to bacterial species considered at a given phylogenetic level defined by the similarity threshold used in the clustering procedure. The RSAs, plotted in the form of Preston plot, were fitted with Volkov's model. The model fits well the Microbiota RSA, except in the tail region, that shows a deviation from the neutrality assumption. Looking at the model parameters we were able to discriminate between different animal species, giving also a biological explanation. Moreover, the biodiversity estimator obtained by Volkov's model also differentiates the animal species and is in good agreement with the first and second order Hill's numbers, that are common evenness indexes simply based on the fraction of individuals per species. CONCLUSIONS: We conclude that the neutrality assumption is a good approximation for the Microbiota dynamics and the observation that Volkov's model works for this ecosystem is a further proof of the RSA universality. Moreover, the ability to separate different animals with the model parameters and biodiversity number are promising results if we think about future applications on human data, in which the Microbiota composition and biodiversity are in close relationships with a variety of diseases and life-styles.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Bovinos/microbiologia , Galinhas/microbiologia , Microbioma Gastrointestinal , Sus scrofa/microbiologia , Animais , Bactérias/genética , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...