Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Cell Biol ; 34(2): 85-89, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38087709

RESUMO

Artificial intelligence (AI) is widely used for exploiting multimodal biomedical data, with increasingly accurate predictions and model-agnostic interpretations, which are however also agnostic to biological mechanisms. Combining metabolic modelling, 'omics, and imaging data via multimodal AI can generate predictions that can be interpreted mechanistically and transparently, therefore with significantly higher therapeutic potential.


Assuntos
Inteligência Artificial , Multiômica , Modelos Biológicos
2.
Methods Mol Biol ; 2553: 325-393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227551

RESUMO

Breast cancer is one of the most common cancers in women worldwide, which causes an enormous number of deaths annually. However, early diagnosis of breast cancer can improve survival outcomes enabling simpler and more cost-effective treatments. The recent increase in data availability provides unprecedented opportunities to apply data-driven and machine learning methods to identify early-detection prognostic factors capable of predicting the expected survival and potential sensitivity to treatment of patients, with the final aim of enhancing clinical outcomes. This tutorial presents a protocol for applying machine learning models in survival analysis for both clinical and transcriptomic data. We show that integrating clinical and mRNA expression data is essential to explain the multiple biological processes driving cancer progression. Our results reveal that machine-learning-based models such as random survival forests, gradient boosted survival model, and survival support vector machine can outperform the traditional statistical methods, i.e., Cox proportional hazard model. The highest C-index among the machine learning models was recorded when using survival support vector machine, with a value 0.688, whereas the C-index recorded using the Cox model was 0.677. Shapley Additive Explanation (SHAP) values were also applied to identify the feature importance of the models and their impact on the prediction outcomes.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Humanos , Aprendizado de Máquina , RNA Mensageiro , Análise de Sobrevida , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...