Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (208)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38975757

RESUMO

Gut microbial products are known to act both locally within the intestine and get absorbed into circulation, where their effects can extend to numerous distant organ systems. Short-chain fatty acids (SCFA) are one class of metabolites produced by gut microbes during the fermentation of indigestible dietary fiber. They are now recognized as important contributors to how the gut microbiome influences extra-intestinal organ systems via the gut-lung, gut-brain, and other gut-organ axes throughout the host. SCFAs are absorbed from the colon, through intestinal tissue, into the portal vein (PV). They then pass through the liver, and are consumed in various organs such as the brain, muscle, adipose tissue, and lungs. SCFAs are most easily measured in the expelled fecal material however, more accurate measurements have been obtained from intra-colonic fecal contents. Here we propose that sampling PV and systemic circulating plasma of a single subject may be preferable for studying the absorption, transport, and systemic levels of SCFAs in mice. We present a new technique for efficient blood sampling from the PV and inferior vena cava (IVC) that allows for the collection of relatively large volumes of blood from the portal and systemic circulations. This is accomplished by ligating the PV, thereby allowing for the dilation or enlargement of the PV as it backfills from the mesenteric veins that drain into it. Using this method, we were able to improve the rate of successful collection as well as the total amount of blood collected (up to 0.3 mL from IVC and 0.5 mL from PV).


Assuntos
Microbioma Gastrointestinal , Veia Porta , Veia Cava Inferior , Animais , Camundongos , Veia Porta/metabolismo , Microbioma Gastrointestinal/fisiologia , Veia Cava Inferior/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Coleta de Amostras Sanguíneas/métodos , Masculino
2.
Front Immunol ; 14: 1260627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781371

RESUMO

Background: Patients with septic shock caused by Staphylococcus aureus have mortality rates exceeding 50%, despite appropriate antibiotic therapy. Our objectives were to establish a rabbit model of S. aureus septic shock and to determine whether a novel immunotherapy can prevent or halt its natural disease progression. Methods: Anesthetized rabbits were ventilated with lung-protective low-tidal volume, instrumented for advanced hemodynamic monitoring, and characterized for longitudinal changes in acute myocardial dysfunction by echocardiography and sepsis-associated biomarkers after S. aureus intravenous challenge. To demonstrate the potential utility of this hyperdynamic septic shock model for preclinical drug development, rabbits were randomized for prophylaxis with anti-Hla/Luk/ClfA monoclonal antibody combination that neutralizes alpha-hemolysin (Hla), the bicomponent pore-forming leukocidins (Luk) including Panton-Valentine leukocidin, leukocidin ED, and gamma-hemolysin, and clumping factor A (ClfA), or an irrelevant isotype-matched control IgG (c-IgG), and then challenged with S. aureus. Results: Rabbits challenged with S. aureus, but not those with saline, developed a hyperdynamic state of septic shock characterized by elevated cardiac output (CO), increased stroke volume (SV) and reduced systemic vascular resistance (SVR), which was followed by a lethal hypodynamic state characterized by rapid decline in mean arterial pressure (MAP), increased central venous pressure, reduced CO, reduced SV, elevated SVR, and reduced left-ventricular ejection fraction, thereby reproducing the hallmark clinical features of human staphylococcal septic shock. In this model, rabbits pretreated with anti-Hla/Luk/ClfA mAb combination had 69% reduction in mortality when compared to those pretreated with c-IgG (P<0.001). USA300-induced acute circulatory failure-defined as >70% decreased in MAP from pre-infection baseline-occurred in only 20% (2/10) of rabbits pretreated with anti-Hla/Luk/ClfA mAb combination compared to 100% (9/9) of those pretreated with c-IgG. Prophylaxis with anti-Hla/Luk/ClfA mAb combination halted progression to lethal hypodynamic shock, as evidenced by significant protection against the development of hyperlactatemia, hypocapnia, hyperkalemia, leukopenia, neutropenia, monocytopenia, lymphopenia, as well as biomarkers associated with acute myocardial injury. Conclusion: These results demonstrate the potential utility of a mechanically ventilated rabbit model that reproduced hallmark clinical features of hyperdynamic septic shock and the translational potential of immunotherapy targeting S. aureus virulence factors for the prevention of staphylococcal septic shock.


Assuntos
Choque Séptico , Choque , Infecções Estafilocócicas , Humanos , Animais , Coelhos , Staphylococcus aureus , Anticorpos Monoclonais/uso terapêutico , Proteínas Hemolisinas , Leucocidinas , Choque Séptico/tratamento farmacológico , Respiração Artificial , Volume Sistólico , Função Ventricular Esquerda , Choque/tratamento farmacológico , Imunoglobulina G
3.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662303

RESUMO

Lung immune tone, i.e. the immune state of the lung, can vary between individuals and over a single individual's lifetime, and its basis and regulation in the context of inflammatory responses to injury is poorly understood. The gut microbiome, through the gut-lung axis, can influence lung injury outcomes but how the diet and microbiota affect lung immune tone is also unclear. We hypothesized that lung immune tone would be influenced by the presence of fiber-fermenting short-chain fatty acid (SCFA)-producing gut bacteria. To test this hypothesis, we conducted a fiber diet intervention study followed by lung injury in mice and profiled gut microbiota using 16S sequencing, metabolomics, and lung immune tone. We also studied germ-free mice to evaluate lung immune tone in the absence of microbiota and performed in vitro mechanistic studies on immune tone and metabolic programming of alveolar macrophages exposed to the SCFA propionate (C3). Mice on high-fiber diet were protected from sterile lung injury compared to mice on a fiber-free diet. This protection strongly correlated with lower lung immune tone, elevated propionate levels and enrichment of specific fecal microbiota taxa; conversely, lower levels of SCFAs and an increase in other fatty acid metabolites and bacterial taxa correlated with increased lung immune tone and increased lung injury in the fiber-free group. In vitro , C3 reduced lung alveolar macrophage immune tone (through suppression of IL-1ß and IL-18) and metabolically reprogrammed them (switching from glycolysis to oxidative phosphorylation after LPS challenge). Overall, our findings reveal that the gut-lung axis, through dietary fiber intake and enrichment of SCFA-producing gut bacteria, can regulate innate lung immune tone via IL-1ß and IL-18 pathways. These results provide a rationale for the therapeutic development of dietary interventions to preserve or enhance specific aspects of host lung immunity.

4.
Antimicrob Agents Chemother ; 65(7): e0272420, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972247

RESUMO

Development and validation of large animal models of Pseudomonas aeruginosa ventilator-associated pneumonia are needed for testing new drug candidates in a manner that mimics how they will be used clinically. We developed a new model in which rabbits were ventilated with low tidal volume and challenged with P. aeruginosa to recapitulate hallmark clinical features of acute respiratory distress syndrome (ARDS): acute lung injury and inflammation, progressive decrease in arterial oxygen partial pressure to fractional inspired oxygen PaO2:FiO2, leukopenia, neutropenia, thrombocytopenia, hyperlactatemia, severe hypotension, bacterial dissemination from lung to other organs, multiorgan dysfunction, and ultimately death. We evaluated the predictive power of this rabbit model for antibiotic efficacy testing by determining whether a humanized dosing regimen of meropenem, a potent antipseudomonal ß-lactam antibiotic, when administered with or without intensive care unit (ICU)-supportive care (fluid challenge and norepinephrine), could halt or reverse natural disease progression. Our humanized meropenem dosing regimen produced a plasma concentration-time profile in the rabbit model similar to those reported in patients with ventilator-associated bacterial pneumonia. In this rabbit model, treatment with humanized meropenem and ICU-supportive care achieved the highest level of survival, halted the worsening of ARDS biomarkers, and reversed lethal hypotension, although treatment with humanized meropenem alone also conferred some protection compared to treatment with placebo (saline) alone or placebo plus ICU-supportive care. In conclusion, this rabbit model could help predict whether an antibiotic will be efficacious for the treatment of human ventilator-associated pneumonia.


Assuntos
Pneumonia Associada à Ventilação Mecânica , Pseudomonas aeruginosa , Animais , Antibacterianos/uso terapêutico , Desenvolvimento de Medicamentos , Humanos , Meropeném , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...