Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501757

RESUMO

In this work, a method for identifying counterfeit coins based on an electromagnetic acoustic transducer (EMAT) to detect the difference in the coin's natural acoustic frequency response is presented. In the experimental system, the acoustic oscillation induced by a pulsed magnetic field is received by a microphone and recorded by an oscilloscope. The natural acoustic frequency of the coin is resolved by the fast Fourier transform (FFT) method on the computer. It is found that the natural frequencies of the possible counterfeit coins deviate significantly from the standard ranges of 16.9 to 17.4 kHz for the authentic 50 New Taiwan Dollar (NTD) coins. The observed natural frequencies of the coin are consistent with the values predicted by analytical estimation. We also built a prototype EMAT coin classification system to detect the natural acoustic frequency by direct frequency counting using a microcontroller. The prototype system demonstrates that a counterfeit coin can be identified by its natural frequency in less than 30 ms using the EMAT method. The proposed technique can be applied to the vending machine to improve the accuracy in discriminating between authentic and counterfeit coins.

2.
Sensors (Basel) ; 22(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35459081

RESUMO

The eddy-current (EC) testing method is frequently utilized in the nondestructive inspection of conductive materials. To detect the minor and complex-shaped defects on the surface and in the underlying layers of a metallic sample, a miniature eddy-current probe with high sensitivity is preferred for enhancing the signal quality and spatial resolution of the obtained eddy-current images. In this work, we propose a novel design of a miniature eddy-current probe using a giant magnetoresistance (GMR) sensor fabricated on a silicon chip. The in-house-made GMR sensor comprises two cascaded spin-valve elements in parallel with an external variable resistor to form a Wheatstone bridge. The two elements on the chip are excited by the alternating magnetic field generated by a tiny coil aligned to the position that balances the background output of the bridge sensor. In this way, the two GMR elements behave effectively as an axial gradiometer with the bottom element sensitive to the surface and near-surface defects on a conductive specimen. The performance of the EC probe is verified by the numerical simulation and the corresponding experiments with machined defects on metallic samples. With this design, the geometric characteristics of the defects are clearly visualized with a spatial resolution of about 1 mm. The results demonstrate the feasibility and superiority of the proposed miniature GMR EC probe for characterizing the small and complex-shaped defects in multilayer conductive samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...