Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461689

RESUMO

The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.

2.
Res Sq ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546778

RESUMO

The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and active transport of biomolecular condensates.

3.
Phys Rev E ; 107(5): L052602, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329064

RESUMO

We present the diffusiophoresis of ellipsoidal particles induced by ionic solute gradients. Contrary to the common expectation that diffusiophoresis is shape independent, here we show experimentally that this assumption breaks down when the thin Debye layer approximation is relaxed. By tracking the translation and rotation of various ellipsoids, we find that the phoretic mobility of ellipsoids is sensitive to the eccentricity and the orientation of the ellipsoid relative to the imposed solute gradient, and can further lead to nonmonotonic behavior under strong confinement. We show that such a shape- and orientation-dependent diffusiophoresis of colloidal ellipsoids can be easily captured by modifying theories for spheres.

4.
MRS Commun ; 13(6): 1053-1062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38818251

RESUMO

The ability to govern particle assembly in an evaporative-driven additive manufacturing (AM) can realize multi-scale features fundamental to creating printed electronics. However, existing techniques remain challenging and often require templates or contaminating solutes. We explore the control of particle deposition in 3D-printed colloids by diffusiophoresis, a previously unexplored mechanism in multi-scale AM. Diffusiophoresis can introduce spontaneous phoretic particle motion by establishing local solute concentration gradients. We show that diffusiophoresis can play a dominant role in complex evaporative-driven particle assembly, enabling a fundamentally new and versatile control of particle deposition in a multi-scale AM process.

5.
Electrophoresis ; 42(21-22): 2356-2364, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558074

RESUMO

Electroosmosis on nonuniformly charged surfaces often gives rise to intriguing flow behaviors, which can be utilized in applications such as mixing processes and designing micromotors. Here, we demonstrate nonuniform electroosmosis induced by electrochemical reactions. Water electrolysis creates pH gradients near the electrodes that cause a spatiotemporal change in the wall zeta potential, leading to nonuniform electroosmosis. Such nonuniform EOFs induce multiple vortices, which promote the continuous accumulation of particles that subsequently form a colloidal band. The band develops vertically into a "wall" of particles that spans from the bottom to the top surface of the chamber. Such a flow-driven colloidal band can be potentially used in colloidal self-assembly and separation processes irrespective of the particle surface properties. For instance, we demonstrate these vortices can promote rapid segregation of soft colloids such as oil droplets and fat globules.


Assuntos
Coloides , Eletro-Osmose , Eletrodos , Eletrólise , Concentração de Íons de Hidrogênio
6.
Nano Lett ; 21(18): 7625-7630, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516140

RESUMO

The transport of nanoparticles in biological hydrogels is often hindered by the strong confinement of the media, thus limiting important applications such as drug delivery and disinfection. Here, we investigate nanoparticle transport in collagen hydrogels driven by diffusiophoresis. Contrary to common expectations for boundary confinement effects where the confinement hinders diffusiophoresis, we observe a nonmonotonic behavior in which maximum diffusiophoretic mobility is observed at intermediate confinement. We find that such behavior is a consequence of the interplay between multiple size-dependent effects. Our results display the utility of diffusiophoresis for enhanced nanoparticle transport in physiologically relevant conditions under tight confinement, suggesting a potential strategy for drug delivery in compressed tissues.


Assuntos
Hidrogéis , Nanopartículas , Colágeno , Sistemas de Liberação de Medicamentos
7.
ACS Nano ; 14(10): 14219-14227, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33000940

RESUMO

From birth to health, surfactants play an essential role in our lives. Due to the importance, their environmental impacts are well understood. One of the aspects that has been extensively studied is their impact on bacteria, particularly on their motility. Here, we uncover an alternate chemotactic strategy triggered by surfactants-diffusiophoresis. We show that even a trace amount of ionic surfactants, down to a single ppm level, can promote the bacterial diffusiophoresis by boosting the surface charge of the cells. Because diffusiophoresis is driven by the surface-solute interactions, surfactant-enhanced diffusiophoresis is observed regardless of the types of bacteria. Whether Gram-positive or -negative, flagellated or nonflagellated, the surfactants enable fast migration of freely suspended bacteria, suggesting a ubiquitous locomotion mechanism that has been largely overlooked. We also demonstrate the implication of surfactant-enhanced bacterial diffusiophoresis on the rapid formation of biofilms in flow networks, suggesting environmental and biomedical implications.


Assuntos
Tensoativos , Natação , Bactérias , Biofilmes , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...