Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 27(6): 1060-9, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24802129

RESUMO

1-Methylpyrene, a carcinogenic polycyclic aromatic hydrocarbon, forms benzylic DNA adducts, in particular N2-(1-methylpyrenyl)-2'-deoxyguanosine, in mice and rats. It is bioactivated via 1-hydroxymethylpyrene (1-HMP) to electrophilic 1-sulfooxymethylpyrene (1-SMP). In this study, we explored the role of individual mouse sulfotransferase (SULT) forms in this activation. First, we showed that all nine mouse SULTs tested were able to activate 1-HMP to a mutagen in the his- Salmonella typhimurium reversion test. Some activation was even observed with Sult2a3 and Sult5a1, orphan forms for which no substrates were identified hitherto. Subsequently, we used cytosolic preparations from tissues of four mouse lines (wild-type, Sult1a1-, Sult1d1-, and transgenic for human SULT1A1/2) for the activation of 1-HMP in the mutagenicity assay. The most prominent impacts of the genetic SULT status were 96% decrease in hepatic activation by Sult1a1 knockout, 99% decrease in renal activation by Sult1d1 knockout, and 100-fold increase in pulmonary activation by transgenic human SULT1A1/2. Finally, we treated the various mouse lines with 1-HMP (19.3 mg/kg, intraperitoneally), and then determined 1-SMP levels in plasma and DNA adducts in tissues. Transgenic human SULT1A1/2 strongly enhanced 1-SMP plasma levels and DNA adduct formation in the liver, lung, heart, and kidney but not in the colon. Sult1a1 and Sult1d1 knockout reduced plasma 1-SMP levels as well as DNA adduct formation in some tissues (strongest effects: 97% decrease in 1-SMP and 89% decrease in hepatic adducts in Sult1a1- mice). The adduct levels detected in various tissues did not accurately reflect the activation capacity of these tissues determined in vitro, probably due to the distribution of the reactive metabolite 1-SMP via the circulation. In conclusion, we demonstrated that many mouse SULT forms are able to activate 1-HMP. In vivo, we verified a prominent role of Sult1a1 in hepatic and renal adduct formation and a smaller but unambiguous role of Sult1d1, and demonstrated the strong impact of transgenic human SULT1A1/2.


Assuntos
Arilsulfotransferase/metabolismo , Modelos Animais de Doenças , Pirenos/metabolismo , Salmonella typhimurium/metabolismo , Animais , Arilsulfotransferase/deficiência , Arilsulfotransferase/genética , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Estrutura Molecular , Pirenos/administração & dosagem , Pirenos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
2.
Arch Toxicol ; 88(3): 815-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337722

RESUMO

The common polycyclic aromatic hydrocarbon 1-methylpyrene is hepatocarcinogenic in the newborn mouse assay. In vitro studies showed that it is metabolically activated via benzylic hydroxylation and sulphation to a reactive ester, which forms benzylic DNA adducts, N(2)-(1-methylpyrenyl)-2'-deoxyguanosine (MPdG) and N(6)-(1-methylpyrenyl)-2'-deoxyadenosine (MPdA). Formation of these adducts was also observed in animals treated with the metabolites, 1-hydroxymethylpyrene and 1-sulphooxymethylpyrene (1-SMP), whereas corresponding data are missing for 1-methylpyrene. In the present study, we treated mice with 1-methylpyrene and subsequently analysed blood serum for the presence of the reactive metabolite 1-SMP and tissue DNA for the presence of MPdG and MPdA adducts. We used wild-type mice and a mouse line transgenic for human sulphotransferases (SULT) 1A1 and 1A2, males and females. All analyses were conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry, for the adducts with isotope-labelled internal standards. 1-SMP was detected in all treated animals. Its serum level was higher in transgenic mice than in the wild-type (p < 0.001). Likewise, both adducts were detected in liver, kidney and lung DNA of all exposed animals. The transgene significantly enhanced the level of each adduct in each tissue of both sexes (p < 0.01-0.001). Adduct levels were highest in the liver, the target tissue of carcinogenesis, in each animal model used. MPdG and MPdA adducts were also observed in rats treated with 1-methylpyrene. Our findings corroborate the hypothesis that 1-SMP is indeed the ultimate carcinogen of 1-methylpyrene and that human SULT are able to mediate the terminal activation in vivo.


Assuntos
Carcinógenos/farmacologia , Adutos de DNA/química , Pirenos/química , Pirenos/farmacologia , Animais , Arilsulfotransferase/genética , Arilsulfotransferase/metabolismo , Carcinógenos/química , Desoxiadenosinas/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Feminino , Humanos , Inativação Metabólica , Masculino , Camundongos , Camundongos Transgênicos , Pirenos/sangue , Ratos , Ratos Wistar , Ácidos Sulfúricos/química
3.
Mol Nutr Food Res ; 56(4): 593-600, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22351042

RESUMO

SCOPE: It was reported that the Maillard product 5-hydroxymethylfurfural (HMF) initiates and promotes aberrant crypt foci (ACF) in rat colon. We studied whether 5-sulfooxymethylfurfural (SMF), an electrophilic and mutagenic metabolite of HMF, is able to induce ACF in two murine models. METHODS AND RESULTS: In the first model, FVB/N mice received four intraperitoneal administrations of SMF (62.5 or 125 mg/kg) or azoxymethane (10 mg/kg). Animals were killed 4-40 weeks after the last treatment. A total of 1064 ACF and five adenocarcinomas were detected in the azoxymethane-treated groups (20 animals), but none in the negative control and SMF-treated groups (35 and 50 animals, respectively). In the second model, HMF was administered via drinking water to wild-type FVB/N mice and transgenic mice carrying several copies of human sulfotransferase (SULT) 1A1 and 1A2 genes. HMF SULT activity was clearly elevated in cytosolic fractions of colon mucosa, liver and kidney of transgenic animals compared to wild-type mice and humans. The animals (six per group) received 134 and 536 mg HMF/kg/day for 12 weeks. HMF did not induce any ACF either in wild-type or transgenic animals. CONCLUSION: We found no evidence for an induction of ACF by HMF or its metabolite SMF in extensive studies in mice.


Assuntos
Focos de Criptas Aberrantes/patologia , Arilsulfotransferase/genética , Furaldeído/análogos & derivados , Focos de Criptas Aberrantes/induzido quimicamente , Animais , Arilsulfotransferase/metabolismo , Azoximetano/administração & dosagem , Azoximetano/toxicidade , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Feminino , Furaldeído/administração & dosagem , Furaldeído/toxicidade , Regulação da Expressão Gênica , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos
4.
Carcinogenesis ; 32(11): 1734-40, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21900212

RESUMO

Soluble sulfotransferases (SULTs) generate electrophilically reactive metabolites from numerous food-borne compounds, environmental contaminants and drugs, often resulting in mutagenicity and carcinogenicity. Substrate specificity, regulation and tissue distribution of SULTs show large interspecies differences. In humans, therefore, SULTs may be involved in the induction of cancer in different tissues than in standard animal models. To construct a rodent model taking some species differences into account, we transferred a 68.5 kb human (h) genomic sequence that comprised the transcribed and long flanking regions of SULT1A1 and 1A2 into murine oocytes. This approach resulted in several mouse lines expressing these human genes in a copy number-dependent manner with a tissue distribution similar to that in humans. In previous in vitro studies, we had demonstrated that human SULT1A1 and 1A2 efficiently catalyze the terminal activation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to a mutagen. The transgenic mice were used to study the hSULT1A1/1A2-mediated activation. Tissue distribution and levels of DNA adducts were determined in hSULT1A1/1A2 transgenic and wild-type mice after an oral dosage of PhIP. Transgenic mice exhibited significantly elevated PhIP-DNA adduct levels compared with the wild-type in liver (13-fold), lung (3.8-fold), colon (2-fold), kidney (1.6-fold) and cecum (1.5-fold). Moreover, among the eight tissues examined, liver was the one with the lowest and highest adduct levels in wild-type and transgenic mice, respectively. Hence, expression of hSULT1A1/1A2 not only enhanced the genotoxicity but also substantially changed the organotropism of PhIP.


Assuntos
Arilsulfotransferase/fisiologia , Adutos de DNA/metabolismo , Imidazóis/metabolismo , Animais , Dano ao DNA , Feminino , Dosagem de Genes , Genótipo , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Transgênicos , Distribuição Tecidual
5.
FASEB J ; 20(7): 865-73, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16675844

RESUMO

In this study we investigated whether the expression of N-terminal myosin light chain-1 (MLC-1) peptides could improve the intrinsic contractility of the whole heart. We generated transgenic rats (TGR) that overexpressed minigenes encoding the N-terminal 15 amino acids of human atrial MLC-1 (TGR/hALC-1/1-15, lines 7475 and 3966) or human ventricular MLC-1 (TGR/hVLC-1/1-15, lines 6113 and 6114) isoforms in cardiomyocytes. Synthetic N-terminal peptides revealed specific actin binding, with a significantly (P<0.01) lower dissociation constant (K(D)) for the hVLC-1/1-15-actin complex compared with the K(D) value of the hALC-1/1-15-actin complex. Using synthetic hVLC-1/1-15 as a TAT fusion peptide labeled with the fluorochrome TAMRA, we observed specific accumulation of the N-terminal MLC-1 peptide at the sarcomere predominantly within the actin-containing I-band, but also within the actin-myosin overlap zone (A-band) in intact adult cardiomyocytes. For the first time we show that the expression of N-terminal human MLC-1 peptides in TGR (range: 3-6 muM) correlated positively with significant (P<0.001) improvements of the intrinsic contractile state of the isolated perfused heart (Langendorff mode): systolic force generation, as well as the rates of both force generation and relaxation, rose in TGR lines that expressed the transgenic human MLC-1 peptide, but not in a TGR line with undetectable transgene expression levels. The positive inotropic effect of MLC-1 peptides occurred in the absence of a hypertrophic response. Thus, expression of N-terminal domains of MLC-1 represent a valuable tool for the treatment of the failing heart.


Assuntos
Coração/fisiologia , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Actinas , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica , Terapia Genética , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Ligação Proteica , Ratos , Ratos Endogâmicos WKY
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...