Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
IEEE Trans Image Process ; 33: 3496-3507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809729

RESUMO

This paper introduces a stochastic plug-and-play (PnP) sampling algorithm that leverages variable splitting to efficiently sample from a posterior distribution. The algorithm based on split Gibbs sampling (SGS) draws inspiration from the half quadratic splitting method (HQS) and the alternating direction method of multipliers (ADMM). It divides the challenging task of posterior sampling into two simpler sampling problems. The first problem depends on the likelihood function, while the second is interpreted as a Bayesian denoising problem that can be readily carried out by a deep generative model. Specifically, for an illustrative purpose, the proposed method is implemented in this paper using state-of-the-art diffusion-based generative models. Akin to its deterministic PnP-based counterparts, the proposed method exhibits the great advantage of not requiring an explicit choice of the prior distribution, which is rather encoded into a pre-trained generative model. However, unlike optimization methods (e.g., PnP-ADMM and PnP-HQS) which generally provide only point estimates, the proposed approach allows conventional Bayesian estimators to be accompanied by confidence intervals at a reasonable additional computational cost. Experiments on commonly studied image processing problems illustrate the efficiency of the proposed sampling strategy. Its performance is compared to recent state-of-the-art optimization and sampling methods.

2.
Opt Express ; 32(1): 932-948, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175114

RESUMO

In the context of spectral unmixing, essential information corresponds to the most linearly dissimilar rows and/or columns of a two-way data matrix which are indispensable to reproduce the full data matrix in a convex linear way. Essential information has recently been shown accessible on-the-fly via a decomposition of the measured spectra in the Fourier domain and has opened new perspectives for fast Raman hyperspectral microimaging. In addition, when some spatial prior is available about the sample, such as the existence of homogeneous objects in the image, further acceleration for the data acquisition procedure can be achieved by using superpixels. The expected gain in acquisition time is shown to be around three order of magnitude on simulated and real data with very limited distortions of the estimated spectrum of each object composing the images.

3.
Anal Chem ; 95(42): 15497-15504, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37821082

RESUMO

In the context of multivariate curve resolution (MCR) and spectral unmixing, essential information (EI) corresponds to the most linearly dissimilar rows and/or columns of a two-way data matrix. In recent works, the assessment of EI has been revealed to be a very useful practical tool to select the most relevant spectral information before MCR analysis, key features being speed and compression ability. However, the canonical approach relies on the principal component analysis to evaluate the convex hull that encapsulates the data structure in the normalized score space. This implies that the evaluation of the essentiality of each spectrum can only be achieved after all the spectra have been acquired by the instrument. This paper proposes a new approach to extract EI in the Fourier domain (EIFD). Spectral information is transformed into Fourier coefficients, and EI is assessed from a convex hull analysis of the data point cloud in the 2D phasor plots of a few selected harmonics. Because the coordinate system of a phasor plot does not depend on the data themselves, the evaluation of the essentiality of the information carried by each spectrum can be achieved individually and independently from the others. As a result, time-consuming operations like Raman spectral imaging can be significantly accelerated exploiting a chemometric-driven (i.e., based on the EI content of a spectral pixel) procedure for data acquisition and targeted sampling. The usefulness of EIFD is shown by analyzing Raman hyperspectral microimaging data, demonstrating a potential 50-fold acceleration of Raman acquisition.

4.
IEEE Trans Image Process ; 32: 5692-5704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37812540

RESUMO

When adopting a model-based formulation, solving inverse problems encountered in multiband imaging requires to define spatial and spectral regularizations. In most of the works of the literature, spectral information is extracted from the observations directly to derive data-driven spectral priors. Conversely, the choice of the spatial regularization often boils down to the use of conventional penalizations (e.g., total variation) promoting expected features of the reconstructed image (e.g., piece-wise constant). In this work, we propose a generic framework able to capitalize on an auxiliary acquisition of high spatial resolution to derive tailored data-driven spatial regularizations. This approach leverages on the ability of deep learning to extract high level features. More precisely, the regularization is conceived as a deep generative network able to encode spatial semantic features contained in this auxiliary image of high spatial resolution. To illustrate the versatility of this approach, it is instantiated to conduct two particular tasks, namely multiband image fusion and multiband image inpainting. Experimental results obtained on these two tasks demonstrate the benefit of this class of informed regularizations when compared to more conventional ones.

5.
Med Image Anal ; 84: 102689, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502604

RESUMO

When no arterial input function is available, quantification of dynamic PET images requires a previous step devoted to the extraction of a reference time-activity curve (TAC). Factor analysis is often applied for this purpose. This paper introduces a novel approach that conducts a new kind of nonlinear factor analysis relying on a compartment model, and computes the kinetic parameters of specific binding tissues jointly. To this end, it capitalizes on data-driven parametric imaging methods to provide a physical description of the underlying PET data, directly relating the specific binding with the kinetics of the non-specific binding in the corresponding tissues. This characterization is introduced into the factor analysis formulation to yield a novel nonlinear unmixing model designed for PET image analysis. This model also explicitly introduces global kinetic parameters that allow for a direct estimation of a binding potential that represents the ratio at equilibrium of specifically bound radioligand to the concentration of nondisplaceable radioligand in each non-specific binding tissue. The performance of the method is evaluated on synthetic and real data to demonstrate its potential interest.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Humanos , Tomografia por Emissão de Pósitrons/métodos , Cinética , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
6.
Ultramicroscopy ; 215: 112993, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32516700

RESUMO

This paper discusses the reconstruction of partially sampled spectrum-images to accelerate the acquisition in scanning transmission electron microscopy (STEM). The problem of image reconstruction has been widely considered in the literature for many imaging modalities, but only a few attempts handled 3D data such as spectral images acquired by STEM electron energy loss spectroscopy (EELS). Besides, among the methods proposed in the microscopy literature, some are fast but inaccurate while others provide accurate reconstruction but at the price of a high computation burden. Thus none of the proposed reconstruction methods fulfills our expectations in terms of accuracy and computation complexity. In this paper, we propose a fast and accurate reconstruction method suited for atomic-scale EELS. This method is compared to popular solutions such as beta process factor analysis (BPFA) which is used for the first time on STEM-EELS images. Experiments based on real as synthetic data will be conducted.

7.
IEEE Trans Med Imaging ; 38(9): 2231-2241, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30908203

RESUMO

Factor analysis has proven to be a relevant tool for extracting tissue time-activity curves (TACs) in dynamic PET images, since it allows for an unsupervised analysis of the data. Reliable and interpretable results are possible only if it is considered with respect to suitable noise statistics. However, the noise in reconstructed dynamic PET images is very difficult to characterize, despite the Poissonian nature of the count rates. Rather than explicitly modeling the noise distribution, this paper proposes to study the relevance of several divergence measures to be used within a factor analysis framework. To this end, the ß -divergence, widely used in other applicative domains, is considered to design the data-fitting term involved in three different factor models. The performances of the resulting algorithms are evaluated for different values of ß , in a range covering Gaussian, Poissonian, and Gamma-distributed noises. The results obtained on two different types of synthetic images and one real image show the interest of applying non-standard values of ß to improve the factor analysis.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Análise Fatorial , Humanos , Distribuição Normal , Imagens de Fantasmas
8.
Med Image Anal ; 49: 117-127, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30121510

RESUMO

To analyze dynamic positron emission tomography (PET) images, various generic multivariate data analysis techniques have been considered in the literature, such as principal component analysis (PCA), independent component analysis (ICA), factor analysis and nonnegative matrix factorization (NMF). Nevertheless, these conventional approaches neglect any possible nonlinear variations in the time activity curves describing the kinetic behavior of tissues with specific binding, which limits their ability to recover a reliable, understandable and interpretable description of the data. This paper proposes an alternative analysis paradigm that accounts for spatial fluctuations in the exchange rate of the tracer between a free compartment and a specifically bound ligand compartment. The method relies on the concept of linear unmixing, usually applied on the hyperspectral domain, which combines NMF with a sum-to-one constraint that ensures an exhaustive description of the mixtures. The spatial variability of the signature corresponding to the specific binding tissue is explicitly modeled through a perturbed component. The performance of the method is assessed on both synthetic and real data and is shown to compete favorably when compared to other conventional analysis methods.


Assuntos
Mapeamento Encefálico/métodos , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Algoritmos , Análise Fatorial , Humanos , Imageamento Tridimensional , Imagens de Fantasmas
9.
IEEE Trans Image Process ; 25(9): 3979-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27305679

RESUMO

Hyperspectral unmixing is aimed at identifying the reference spectral signatures composing a hyperspectral image and their relative abundance fractions in each pixel. In practice, the identified signatures may vary spectrally from an image to another due to varying acquisition conditions, thus inducing possibly significant estimation errors. Against this background, the hyperspectral unmixing of several images acquired over the same area is of considerable interest. Indeed, such an analysis enables the endmembers of the scene to be tracked and the corresponding endmember variability to be characterized. Sequential endmember estimation from a set of hyperspectral images is expected to provide improved performance when compared with methods analyzing the images independently. However, the significant size of the hyperspectral data precludes the use of batch procedures to jointly estimate the mixture parameters of a sequence of hyperspectral images. Provided that each elementary component is present in at least one image of the sequence, we propose to perform an online hyperspectral unmixing accounting for temporal endmember variability. The online hyperspectral unmixing is formulated as a two-stage stochastic program, which can be solved using a stochastic approximation. The performance of the proposed method is evaluated on synthetic and real data. Finally, a comparison with independent unmixing algorithms illustrates the interest of the proposed strategy.

10.
IEEE Trans Image Process ; 25(8): 3683-97, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27187960

RESUMO

This paper addresses the problem of single image super-resolution (SR), which consists of recovering a high-resolution image from its blurred, decimated, and noisy version. The existing algorithms for single image SR use different strategies to handle the decimation and blurring operators. In addition to the traditional first-order gradient methods, recent techniques investigate splitting-based methods dividing the SR problem into up-sampling and deconvolution steps that can be easily solved. Instead of following this splitting strategy, we propose to deal with the decimation and blurring operators simultaneously by taking advantage of their particular properties in the frequency domain, leading to a new fast SR approach. Specifically, an analytical solution is derived and implemented efficiently for the Gaussian prior or any other regularization that can be formulated into an l2 -regularized quadratic model, i.e., an l2 - l2 optimization problem. The flexibility of the proposed SR scheme is shown through the use of various priors/regularizations, ranging from generic image priors to learning-based approaches. In the case of non-Gaussian priors, we show how the analytical solution derived from the Gaussian case can be embedded into traditional splitting frameworks, allowing the computation cost of existing algorithms to be decreased significantly. Simulation results conducted on several images with different priors illustrate the effectiveness of our fast SR approach compared with existing techniques.

11.
IEEE Trans Image Process ; 24(12): 4904-17, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26302517

RESUMO

This paper presents an unsupervised Bayesian algorithm for hyperspectral image unmixing, accounting for endmember variability. The pixels are modeled by a linear combination of endmembers weighted by their corresponding abundances. However, the endmembers are assumed random to consider their variability in the image. An additive noise is also considered in the proposed model, generalizing the normal compositional model. The proposed algorithm exploits the whole image to benefit from both spectral and spatial information. It estimates both the mean and the covariance matrix of each endmember in the image. This allows the behavior of each material to be analyzed and its variability to be quantified in the scene. A spatial segmentation is also obtained based on the estimated abundances. In order to estimate the parameters associated with the proposed Bayesian model, we propose to use a Hamiltonian Monte Carlo algorithm. The performance of the resulting unmixing strategy is evaluated through simulations conducted on both synthetic and real data.

12.
IEEE Trans Image Process ; 24(12): 4810-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26285151

RESUMO

We introduce a robust mixing model to describe hyperspectral data resulting from the mixture of several pure spectral signatures. The new model extends the commonly used linear mixing model by introducing an additional term accounting for possible nonlinear effects, that are treated as sparsely distributed additive outliers. With the standard nonnegativity and sum-to-one constraints inherent to spectral unmixing, our model leads to a new form of robust nonnegative matrix factorization with a group-sparse outlier term. The factorization is posed as an optimization problem, which is addressed with a block-coordinate descent algorithm involving majorization-minimization updates. Simulation results obtained on synthetic and real data show that the proposed strategy competes with the state-of-the-art linear and nonlinear unmixing methods.

13.
IEEE Trans Image Process ; 24(11): 4109-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26208345

RESUMO

This paper proposes a fast multi-band image fusion algorithm, which combines a high-spatial low-spectral resolution image and a low-spatial high-spectral resolution image. The well admitted forward model is explored to form the likelihoods of the observations. Maximizing the likelihoods leads to solving a Sylvester equation. By exploiting the properties of the circulant and downsampling matrices associated with the fusion problem, a closed-form solution for the corresponding Sylvester equation is obtained explicitly, getting rid of any iterative update step. Coupled with the alternating direction method of multipliers and the block coordinate descent method, the proposed algorithm can be easily generalized to incorporate prior information for the fusion problem, allowing a Bayesian estimator. Simulation results show that the proposed algorithm achieves the same performance as the existing algorithms with the advantage of significantly decreasing the computational complexity of these algorithms.

14.
IEEE Trans Image Process ; 24(8): 2540-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25915958

RESUMO

Texture characterization is a central element in many image processing applications. Multifractal analysis is a useful signal and image processing tool, yet, the accurate estimation of multifractal parameters for image texture remains a challenge. This is due in the main to the fact that current estimation procedures consist of performing linear regressions across frequency scales of the 2D dyadic wavelet transform, for which only a few such scales are computable for images. The strongly non-Gaussian nature of multifractal processes, combined with their complicated dependence structure, makes it difficult to develop suitable models for parameter estimation. Here, we propose a Bayesian procedure that addresses the difficulties in the estimation of the multifractality parameter. The originality of the procedure is threefold. The construction of a generic semiparametric statistical model for the logarithm of wavelet leaders; the formulation of Bayesian estimators that are associated with this model and the set of parameter values admitted by multifractal theory; the exploitation of a suitable Whittle approximation within the Bayesian model which enables the otherwise infeasible evaluation of the posterior distribution associated with the model. Performance is assessed numerically for several 2D multifractal processes, for several image sizes and a large range of process parameters. The procedure yields significant benefits over current benchmark estimators in terms of estimation performance and ability to discriminate between the two most commonly used classes of multifractal process models. The gains in performance are particularly pronounced for small image sizes, notably enabling for the first time the analysis of image patches as small as 64 × 64 pixels.

15.
IEEE Trans Image Process ; 23(6): 2663-2675, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24686282

RESUMO

This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are post-nonlinear functions of unknown pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using second-order polynomials leading to a polynomial post-nonlinear mixing model. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding an unsupervised nonlinear unmixing algorithm. Due to the large number of parameters to be estimated, an efficient Hamiltonian Monte Carlo algorithm is investigated. The classical leapfrog steps of this algorithm are modified to handle the parameter constraints. The performance of the unmixing strategy, including convergence and parameter tuning, is first evaluated on synthetic data. Simulations conducted with real data finally show the accuracy of the proposed unmixing strategy for the analysis of hyperspectral images.

16.
IEEE Trans Image Process ; 23(5): 2148-2158, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24723576

RESUMO

This paper presents a nonlinear mixing model for joint hyperspectral image unmixing and nonlinearity detection. The proposed model assumes that the pixel reflectances are linear combinations of known pure spectral components corrupted by an additional nonlinear term, affecting the end members and contaminated by an additive Gaussian noise. A Markov random field is considered for nonlinearity detection based on the spatial structure of the nonlinear terms. The observed image is segmented into regions where nonlinear terms, if present, share similar statistical properties. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding a joint nonlinear unmixing and nonlinearity detection algorithm. The performance of the proposed strategy is first evaluated on synthetic data. Simulations conducted with real data show the accuracy of the proposed unmixing and nonlinearity detection strategy for the analysis of hyperspectral images.

17.
IEEE Trans Image Process ; 22(6): 2385-97, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23475357

RESUMO

This paper addresses the problem of estimating the Potts parameter ß jointly with the unknown parameters of a Bayesian model within a Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because performing inference on ß requires computing the intractable normalizing constant of the Potts model. In the proposed MCMC method, the estimation of ß is conducted using a likelihood-free Metropolis-Hastings algorithm. Experimental results obtained for synthetic data show that estimating ß jointly with the other unknown parameters leads to estimation results that are as good as those obtained with the actual value of ß. On the other hand, choosing an incorrect value of ß can degrade estimation performance significantly. To illustrate the interest of this method, the proposed algorithm is successfully applied to real bidimensional SAR and tridimensional ultrasound images.

18.
BMC Bioinformatics ; 14: 99, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23506672

RESUMO

BACKGROUND: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. RESULTS: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. CONCLUSIONS: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Análise em Microsséries/métodos , Teorema de Bayes , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/genética , Influenza Humana/metabolismo , Masculino
19.
IEEE Trans Image Process ; 22(1): 5-16, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22711772

RESUMO

Linear spectral unmixing is a challenging problem in hyperspectral imaging that consists of decomposing an observed pixel into a linear combination of pure spectra (or endmembers) with their corresponding proportions (or abundances). Endmember extraction algorithms can be employed for recovering the spectral signatures while abundances are estimated using an inversion step. Recent works have shown that exploiting spatial dependencies between image pixels can improve spectral unmixing. Markov random fields (MRF) are classically used to model these spatial correlations and partition the image into multiple classes with homogeneous abundances. This paper proposes to define the MRF sites using similarity regions. These regions are built using a self-complementary area filter that stems from the morphological theory. This kind of filter divides the original image into flat zones where the underlying pixels have the same spectral values. Once the MRF has been clearly established, a hierarchical Bayesian algorithm is proposed to estimate the abundances, the class labels, the noise variance, and the corresponding hyperparameters. A hybrid Gibbs sampler is constructed to generate samples according to the corresponding posterior distribution of the unknown parameters and hyperparameters. Simulations conducted on synthetic and real AVIRIS data demonstrate the good performance of the algorithm.

20.
IEEE Trans Image Process ; 22(4): 1267-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22851259

RESUMO

This paper studies a nonlinear mixing model for hyperspectral image unmixing and nonlinearity detection. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated by polynomials leading to a polynomial post-nonlinear mixing model. We have shown in a previous paper that the parameters involved in the resulting model can be estimated using least squares methods. A generalized likelihood ratio test based on the estimator of the nonlinearity parameter is proposed to decide whether a pixel of the image results from the commonly used linear mixing model or from a more general nonlinear mixing model. To compute the test statistic associated with the nonlinearity detection, we propose to approximate the variance of the estimated nonlinearity parameter by its constrained Cramér-Rao bound. The performance of the detection strategy is evaluated via simulations conducted on synthetic and real data. More precisely, synthetic data have been generated according to the standard linear mixing model and three nonlinear models from the literature. The real data investigated in this study are extracted from the Cuprite image, which shows that some minerals seem to be nonlinearly mixed in this image. Finally, it is interesting to note that the estimated abundance maps obtained with the post-nonlinear mixing model are in good agreement with results obtained in previous studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...