Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(9): 095501, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932547

RESUMO

Topological boundary and interface modes are generated in an acoustic waveguide by simple quasiperiodic patterning of the walls. The procedure opens many topological gaps in the resonant spectrum and qualitative as well as quantitative assessments of their topological character are supplied. In particular, computations of the bulk invariant for the continuum wave equation are performed. The experimental measurements reproduce the theoretical predictions with high fidelity. In particular, acoustic modes with high Q factors localized in the middle of a breathable waveguide are engineered by a simple patterning of the walls.

2.
Sci Rep ; 8(1): 3324, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463800

RESUMO

Large classes of electronic, photonic, and acoustic crystals and quasi-crystals have been predicted to support topological wave-modes. Some of these modes are stabilized by certain symmetries but others occur as pure wave phenomena, hence they can be observed in many other media that support wave propagation. Surface water-waves are mechanical in nature but very different from the elastic waves, hence they can provide a new platform for studying topological wave-modes. Motivated by this perspective, we report theoretical and experimental characterizations of water-wave crystals obtained by periodic patterning of the water surface. In particular, we demonstrate the band structure of the spectra and existence of spectral gaps.

3.
Nat Commun ; 8: 14587, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230164

RESUMO

Mechanical systems can display topological characteristics similar to that of topological insulators. Here we report a large class of topological mechanical systems related to the BDI symmetry class. These are self-assembled chains of rigid bodies with an inversion centre and no reflection planes. The particle-hole symmetry characteristic to the BDI symmetry class stems from the distinct behaviour of the translational and rotational degrees of freedom under inversion. This and other generic properties led us to the remarkable conclusion that, by adjusting the gyration radius of the bodies, one can always simultaneously open a gap in the phonon spectrum, lock-in all the characteristic symmetries and generate a non-trivial topological invariant. The particle-hole symmetry occurs around a finite frequency, and hence we can witness a dynamical topological Majorana edge mode. Contrasting a floppy mode occurring at zero frequency, a dynamical edge mode can absorb and store mechanical energy, potentially opening new applications of topological mechanics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...