Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Microbiol Spectr ; : e0320723, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916330

RESUMO

Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism and physiology, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins, and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for future studies investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria. IMPORTANCE: The pathway for biosynthesis and utilization of riboflavin, precursor of the essential coenzymes, FMN and FAD, is of particular interest in the flavin-rich pathogen, Mycobacterium tuberculosis (Mtb), for two important reasons: (i) the pathway includes potential tuberculosis (TB) drug targets and (ii) intermediates from the riboflavin biosynthesis pathway provide ligands for mucosal-associated invariant T (MAIT) cells, which have been implicated in TB pathogenesis. However, the riboflavin pathway is poorly understood in mycobacteria, which lack canonical mechanisms to transport this vitamin and to regulate flavin coenzyme homeostasis. By conditionally disrupting each step of the pathway and assessing the impact on mycobacterial viability and on the levels of the pathway proteins as well as riboflavin, our work provides genetic validation of the riboflavin pathway as a target for TB drug discovery and offers a resource for further exploring the association between riboflavin biosynthesis, MAIT cell activation, and TB infection and disease.

2.
J Infect Dis ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640958

RESUMO

BACKGROUND: Flu-like reactions can occur after exposure to rifampin, rifapentine, or isoniazid. Prior studies have reported the presence of antibodies to rifampin, but associations with underlying pathogenesis are unclear. METHODS: We evaluated PREVENT TB study participants who received weekly isoniazid + rifapentine for 3 months (3HP) or daily isoniazid for 9 months (9H) as treatment for M. tuberculosis infection. Flu-like reaction was defined as a grade ≥2 of any of flu-like symptoms. Controls (3HP or 9H) did not report flu-like reactions. We developed a competitive enzyme-linked immunosorbent assays (ELISA) to detect antibodies against rifapentine, isoniazid, rifampin, and rifapentine metabolite. RESULTS: Among 128 participants, 69 received 3HP (22 with flu-like reactions; 47 controls) and 59 received 9H (12 with flu-like reactions; 47 controls). In participants receiving 3HP, anti-rifapentine IgG was identified in 2/22 (9%) participants with flu-like reactions and 6/47 (13%) controls (P = 0.7), anti-isoniazid IgG in 2/22 (9%) participants with flu-like reactions and 4/47 (9%) controls (P = 0.9), and anti-rifapentine metabolite IgG in 2/47 (4%) controls (P = 0.9). Among participants receiving 9H, IgG and IgM anti-isoniazid antibodies were each present in 4/47 (9%) controls, respectively, but none among participants with flu-like reactions; anti-rifapentine IgG antibodies were not present in any participants with flu-like reactions or controls. CONCLUSIONS: We detected anti-rifapentine, anti-isoniazid, and anti-rifapentine metabolite antibodies, but the proportions of participants with antibodies were low, and did not differ between participants with flu-like reactions and those without such reactions. This suggests that flu-like reactions associated with 3HP and 9H were not antibody-mediated.

4.
bioRxiv ; 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37693561

RESUMO

Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism, physiology and MAIT cell recognition, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria.

5.
Tuberculosis (Edinb) ; 142: 102377, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531864

RESUMO

The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes. Various confounders were presented and discussed at MHM9 including those that originate from the host (comorbidities and coinfections) as well as those arising from the environment (e.g., zoonotic exposures), economic inequality (e.g. healthcare disparities), stigma (a confounder of leprosy and TB for millennia), and historical neglect (a confounder in Native American Nations). This conference report summarizes select talks given at MHM9 highlighting recent research advances, as well as talks regarding the historic and ongoing impact of TB and other infectious diseases on Native American Nations, including those in Southwestern Alaska where the regional TB incidence rate is among the highest in the Western hemisphere.


Assuntos
Coinfecção , Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Tuberculose Bovina , Animais , Bovinos , Humanos , Micobactérias não Tuberculosas , Infecções por Mycobacterium não Tuberculosas/microbiologia
6.
Sci Rep ; 12(1): 22539, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581641

RESUMO

MR1-restricted T (MR1T) cells recognize microbial small molecule metabolites presented on the MHC Class I-like molecule MR1 and have been implicated in early effector responses to microbial infection. As a result, there is considerable interest in identifying chemical properties of metabolite ligands that permit recognition by MR1T cells, for consideration in therapeutic or vaccine applications. Here, we made chemical modifications to known MR1 ligands to evaluate the effect on MR1T cell activation. Specifically, we modified 6,7-dimethyl-8-D-ribityllumazine (DMRL) to generate 6,7-dimethyl-8-D-ribityldeazalumazine (DZ), and then further derivatized DZ to determine the requirements for retaining MR1 surface stabilization and agonistic properties. Interestingly, the IFN-γ response toward DZ varied widely across a panel of T cell receptor (TCR)-diverse MR1T cell clones; while one clone was agnostic toward the modification, most displayed either an enhancement or depletion of IFN-γ production when compared with its response to DMRL. To gain insight into a putative mechanism behind this phenomenon, we used in silico molecular docking techniques for DMRL and its derivatives and performed molecular dynamics simulations of the complexes. In assessing the dynamics of each ligand in the MR1 pocket, we found that DMRL and DZ exhibit differential dynamics of both the ribityl moiety and the aromatic backbone, which may contribute to ligand recognition. Together, our results support an emerging hypothesis for flexibility in MR1:ligand-MR1T TCR interactions and enable further exploration of the relationship between MR1:ligand structures and MR1T cell recognition for downstream applications targeting MR1T cells.


Assuntos
Células T Invariantes Associadas à Mucosa , Linfócitos T , Ligantes , Antígenos de Histocompatibilidade Classe I/metabolismo , Simulação de Acoplamento Molecular , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Apresentação de Antígeno
7.
PLoS One ; 17(9): e0274415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36178936

RESUMO

Lipoarabinomannan (LAM), a component of the Mycobacterium tuberculosis (MTB) cell wall, is detectable in the urine of MTB infected patients with active tuberculosis (TB). LAM-specific antibodies (Igs) have been developed by a variety of traditional and recombinant methods for potential use in a rapid diagnostic test (RDT). We evaluated the analytical performance of the TB LAM Igs to identify pairs that offer superior performance over existing urine LAM tests. We assessed 25 new and 4 existing Igs in a matrixed format using a multiplex electrochemiluminescence-based liquid immunoassay. A total of 841 paired Ig combinations were challenged with in vitro cultured LAM (cLAM) derived from MTB strains representing diverse phylogenetic lineages, alongside urinary LAM (uLAM) from the urine of adults with active pulmonary TB. Analytical sensitivity of down-selected Ig pairs was determined using MTB Aoyama-B cLAM, while diagnostic accuracy was determined using clinical samples. When testing cLAM, the reactivity of Ig pairs was similar across MTB lineages 1-4 but lineage 5:6 had significantly more reactivity among Ig pairs. Overall, 41 Ig pairs had a strong binding affinity to cLAM, as compared to the reference pair of S4-20/A194-01, and 28 Ig pairs therein exhibited a strong affinity for both cLAM and uLAM. Retrospective testing on clinical urine specimens demonstrated varying sensitivities (12-80%) and specificities (14-100%). The five top pairs had a similar analytical limit of detection to the reference pair but in four instances, the sensitivity and specificity with clinical uLAM samples was poor. Overall, epitopes presented by uLAM are different from cLAM, which may affect antibody performance when testing uLAM in patient samples. Several new Ig pairs had similar ranges of high sensitivity to cLAM but overall, there were no new candidate Ig pairs identified in this round of screening with increased performance with uLAM as compared to an existing optimal pair.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Adulto , Testes Diagnósticos de Rotina/métodos , Epitopos , Infecções por HIV/diagnóstico , Humanos , Lipopolissacarídeos , Filogenia , Estudos Retrospectivos , Sensibilidade e Especificidade
8.
J Vis Exp ; (183)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35661678

RESUMO

The role of extracellular vesicles (EVs) in the context of bacterial infection has emerged as a new avenue for understanding microbial physiology. Specifically, Mycobacterium tuberculosis (Mtb) EVs play a role in the host-pathogen interaction and response to environmental stress. Mtb EVs are also highly antigenic and show potential as vaccine components. The most common method for purifying Mtb EVs is density gradient ultracentrifugation. This process has several limitations, including low throughput, low yield, reliance on expensive equipment, technical challenges, and it can negatively impact the resulting preparation. Size exclusion chromatography (SEC) is a gentler alternative method that combats many of the limitations of ultracentrifugation. This protocol demonstrates that SEC is effective for Mtb EV enrichment and produces high-quality Mtb EV preparations of increased yield in a rapid and scalable manner. Additionally, a comparison to density gradient ultracentrifugation by quantification and qualification procedures demonstrates the benefits of SEC. While the evaluation of EV quantity (nanoparticle tracking analysis), phenotype (transmission electron microscopy), and content (Western blotting) is tailored to Mtb EVs, the workflow provided can be applied to other mycobacteria.


Assuntos
Vesículas Extracelulares , Mycobacterium tuberculosis , Western Blotting , Cromatografia em Gel , Vesículas Extracelulares/química , Ultracentrifugação/métodos
9.
Front Cell Infect Microbiol ; 12: 912831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719351

RESUMO

Tuberculosis (TB) remains a public health issue causing millions of infections every year. Of these, about 15% ultimately result in death. Efforts to control TB include development of new and more effective vaccines, novel and more effective drug treatments, and new diagnostics that test for both latent TB Infection and TB disease. All of these areas of research benefit from a good understanding of the physiology of Mycobacterium tuberculosis (Mtb), the primary causative agent of TB. Mtb secreted protein antigens have been the focus of vaccine and diagnosis research for the past century. Recently, the discovery of extracellular vesicles (EVs) as an important source of secreted antigens in Mtb has gained attention. Similarly, the discovery that host EVs can carry Mtb products during in vitro and in vivo infection has spiked interest because of its potential use in blood-based diagnostics. Despite advances in understanding the content of Mtb and Mtb-infected host extracellular vesicles, our understanding on the biogenesis and role of Mtb and host extracellular vesicles during Mtb infection is still nascent. Here, we explore the current literature on extracellular vesicles regarding Mtb, discuss the host and Mtb extracellular vesicles as distinct entities, and discuss current gaps in the field.


Assuntos
Vesículas Extracelulares , Tuberculose Latente , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Vesículas Extracelulares/metabolismo , Humanos
10.
Front Microbiol ; 13: 832054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350619

RESUMO

"Ancestral" Mycobacterium tuberculosis complex (MTBC) strains of Lineage 1 (L1, East African Indian) are a prominent tuberculosis (TB) cause in countries around the Indian Ocean. However, the pathobiology of L1 strains is insufficiently characterized. Here, we used whole genome sequencing (WGS) of 312 L1 strains from 43 countries to perform a characterization of the global L1 population structure and correlate this to the analysis of the synthesis of phenolic glycolipids (PGL) - known MTBC polyketide-derived virulence factors. Our results reveal the presence of eight major L1 sub-lineages, whose members have specific mutation signatures in PGL biosynthesis genes, e.g., pks15/1 or glycosyltransferases Rv2962c and/or Rv2958c. Sub-lineage specific PGL production was studied by NMR-based lipid profiling and strains with a completely abolished phenolphthiocerol dimycoserosate biosynthesis showed in average a more prominent growth in human macrophages. In conclusion, our results show a diverse population structure of L1 strains that is associated with the presence of specific PGL types. This includes the occurrence of mycoside B in one sub-lineage, representing the first description of a PGL in an M. tuberculosis lineage other than L2. Such differences may be important for the evolution of L1 strains, e.g., allowing adaption to different human populations.

11.
Microbiol Spectr ; 9(3): e0100321, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756092

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and has become a major global pathogen in an astonishingly short period of time. The emergence of SARS-CoV-2 has been notable due to its impacts on residents in long-term care facilities (LTCFs). LTCF residents tend to possess several risk factors for severe outcomes of SARS-CoV-2 infection, including advanced age and the presence of comorbidities. Indeed, residents of LTCFs represent approximately 40% of SARS-CoV-2 deaths in the United States. Few studies have focused on the prevalence and transmission dynamics of SARS-CoV-2 among LTCF staff during the early months of the pandemic, prior to mandated surveillance testing. To assess the prevalence and incidence of SARS-CoV-2 among LTCF staff, characterize the extent of asymptomatic infections, and investigate the genomic epidemiology of the virus within these settings, we sampled staff for 8 to 11 weeks at six LTCFs with nasopharyngeal swabs from March through June of 2020. We determined the presence and levels of viral RNA and infectious virus and sequenced 54 nearly complete genomes. Our data revealed that over 50% of infections were asymptomatic/mildly symptomatic and that there was a strongly significant relationship between viral RNA (vRNA) and infectious virus, prolonged infections, and persistent vRNA (4+ weeks) in a subset of individuals, and declining incidence over time. Our data suggest that asymptomatic SARS-CoV-2-infected LTCF staff contributed to virus persistence and transmission within the workplace during the early pandemic period. Genetic epidemiology data generated from samples collected during this period support that SARS-CoV-2 was commonly spread between staff within an LTCF and that multiple-introduction events were less common. IMPORTANCE Our work comprises unique data on the characteristics of SARS-CoV-2 dynamics among staff working at LTCFs in the early months of the SARS-CoV-2 pandemic prior to mandated staff surveillance testing. During this time period, LTCF residents were largely sheltering-in-place. Given that staff were able to leave and return daily and could therefore be a continued source of imported or exported infection, we performed weekly SARS-CoV-2 PCR on nasal swab samples collected from this population. There are limited data from the early months of the pandemic comprising longitudinal surveillance of staff at LTCFs. Our data reveal the surprisingly high level of asymptomatic/presymptomatic infections within this cohort during the early months of the pandemic and show genetic epidemiological analyses that add novel insights into both the origin and transmission of SARS-CoV-2 within LTCFs.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Hospitais , Assistência de Longa Duração , SARS-CoV-2/isolamento & purificação , Análise de Sequência/métodos , Adolescente , Adulto , Idoso , Infecções Assintomáticas/epidemiologia , COVID-19/virologia , Estudos de Coortes , Testes Diagnósticos de Rotina , Monitoramento Epidemiológico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Filogenia , Prevalência , RNA Viral , SARS-CoV-2/classificação , SARS-CoV-2/genética , Manejo de Espécimes , Adulto Jovem
12.
J Biol Chem ; 297(5): 101265, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600887

RESUMO

In Mycobacterium tuberculosis (Mtb), surface-exposed Lipoarabinomannan (LAM) is a key determinant of immunogenicity, yet its intrinsic heterogeneity confounds typical structure-function analysis. Recently, LAM gained a strong foothold as a validated marker for active tuberculosis (TB) infection and has shown great potential in new diagnostic efforts. However, no efforts have yet been made to model or evaluate the impact of mixed polyclonal Mtb infections (infection with multiple strains) on TB diagnostic procedures other than antibiotic susceptibility testing. Here, we selected three TB clinical isolates (HN878, EAI, and IO) and purified LAM from these strains to present an integrated analytical approach of one-dimensional and two-dimensional Nuclear Magnetic Resonance (NMR) spectroscopy, as well as enzymatic digestion and site-specific mass spectrometry (MS) to probe LAM structure and behavior at multiple levels. Overall, we found that the glycan was similar in all LAM preparations, albeit with subtle variations. Succinates, lactates, hydroxybutyrate, acetate, and the hallmark of Mtb LAM-methylthioxylose (MTX), adorned the nonreducing terminal arabinan of these LAM species. Newly identified acetoxy/hydroxybutyrate was present only in LAM from EAI and IO Mtb strains. Notably, detailed LC/MS-MS unambiguously showed that all acyl modifications and the lactyl ether in LAM are at the 3-OH position of the 2-linked arabinofuranose adjacent to the terminal ß-arabinofuranose. Finally, after sequential enzymatic deglycosylation of LAM, the residual glycan that has ∼50% of α-arabinofuranose -(1→5) linked did not bind to monoclonal antibody CS35. These data clearly indicate the importance of the arabinan termini arrangements for the antigenicity of LAM.


Assuntos
Lipopolissacarídeos/química , Mycobacterium tuberculosis/química , Tuberculose/diagnóstico , Configuração de Carboidratos , Humanos , Lipopolissacarídeos/metabolismo , Mycobacterium tuberculosis/metabolismo
13.
Methods Mol Biol ; 2314: 1-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235647

RESUMO

Building upon the foundational research of Robert Koch, who demonstrated the ability to grow Mycobacterium tuberculosis for the first time in 1882 using media made of coagulated bovine serum, microbiologists have continued to develop new and more efficient ways to grow mycobacteria. Presently, all known mycobacterial species can be grown in the laboratory using either axenic culture techniques or in vivo passage in laboratory animals. This chapter provides conventional protocols to grow mycobacteria for diagnostic purposes directly from clinical specimens, as well as in research laboratories for scientific purposes. Detailed protocols used for production of M. tuberculosis in large scale (under normoxic and hypoxic conditions) in bioreactors and for production of obligate intracellular pathogens such as Mycobacterium leprae and "Mycobacterium lepromatosis" using athymic nude mice and armadillos are provided.


Assuntos
Técnicas Bacteriológicas , Infecções por Mycobacterium/microbiologia , Mycobacterium/crescimento & desenvolvimento , Animais , Tatus , Técnicas Bacteriológicas/instrumentação , Reatores Biológicos , Modelos Animais de Doenças , Humanos , Camundongos Nus , Viabilidade Microbiana , Mycobacterium/isolamento & purificação , Mycobacterium leprae/crescimento & desenvolvimento , Mycobacterium leprae/isolamento & purificação , Fatores de Tempo
14.
Methods Mol Biol ; 2314: 77-107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235649

RESUMO

The extraction and separation of native mycobacterial proteins remain necessary for antigen discovery, elucidation of enzymes to improve rational drug design, identification of physiologic mechanisms, use as reagents for diagnostics, and defining host immune responses. In this chapter, methods for the manipulation of whole mycobacterial cells and culture exudates are described in detail as these methods are the requisite first steps towards native protein isolation. Specifically, several methods for the inactivation of viable Mycobacterium tuberculosis along with qualification assays are provided, as this is key to safe manipulation of cell pastes for downstream processes. Next, the concentration of spent culture filtrate media in order to permit separation of soluble, secreted proteins is described followed by the separation of mycobacteria extracellular vesicles (MEV) from the remaining soluble proteins in spent media. We then describe the generation of whole-cell lysate and facile separation of lysate into subcellular fractions to afford cell wall, cell membrane, and cytosol-enriched proteins. Due to the hydrophobic nature of cell wall and cell membrane proteins, several extraction protocols to resolve protein subsets (such as extraction with urea and SDS) are also provided. Finally, methods for separation of hydrophobic and hydrophilic proteins from both whole-cell lysate and spent culture media are included. While these methods were optimized for the manipulation of Mycobacterium tuberculosis cells, they have been successfully applied to extract and isolate Mycobacterium leprae, Mycobacterium ulcerans, and Mycobacterium avium proteins.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Frações Subcelulares/metabolismo , Proteínas de Bactérias/química , Membrana Celular/química , Proteínas de Membrana/química
15.
Methods Mol Biol ; 2314: 533-548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235669

RESUMO

The use of proteomic technologies to characterize and study the proteome of mycobacteria has provided important information in terms of function, diversity, protein-protein interactions, and host-pathogen interactions in Mycobacterium spp. There are many different mass spectrometry methodologies that can be applied to proteomics studies of mycobacteria and microorganisms in general. Sample processing and appropriate study design are critical to generating high-quality data regardless of the mass spectrometry method applied. Appropriate study design relies on statistical rigor and data curation using bioinformatics approaches that are widely applicable regardless of the organism or system studied. Sample processing, on the other hand, is often a niched process specific to the physiology of the organism or system under investigation. Therefore, in this chapter, we will provide protocols for processing mycobacterial protein samples for the specific application of Top-down and Bottom-up proteomic analyses.


Assuntos
Proteínas de Bactérias/metabolismo , Cromatografia Líquida/métodos , Mycobacterium/metabolismo , Proteoma/análise , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Processamento de Proteína Pós-Traducional
16.
J Am Assoc Lab Anim Sci ; 60(4): 431-441, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34172106

RESUMO

Reuse of disposable personal protective equipment is traditionally discouraged, yet in times of heightened medical applications such as the SARS CoV-2 pandemic, it can be difficult to obtain. In this article we examine the reuse of disposable gowns with respect to still providing personnel protection. XR7, a fluorescent powder, was used to track contamination of gowns after manipulation of rodent cages. Mouse cages were treated with XR7 prior to manipulations. Disposable gowns were labeled for single person use and hung in common procedure spaces within the vivarium between usages. A simulated rack change of 140 cages was completed using XR7-treated cages. One individual changed all cages with a break occurring after the first 70 cages, requiring the gown to be removed and reused once. To simulate research activities, 5 individuals accessed 3 XR7-treated cages daily for 5 d. Each mouse in the XR7-treated cages was manipulated at least once before returning cages to the housing room. Disposable gowns were reused 5 times per individual. Gowns, gloves, clothing, bare arms, and hands were scanned for fluorescence before and after removing PPE. Fluorescence was localized to gloves and gown sleeves in closest contact with animals and caging. No fluorescence was detected on underlying clothing, or bare arms and hands after removing PPE. Fluorescence was not detected in procedure spaces where gowns were hung. The lack of fluorescence on personnel or surfaces indicate that gowns can be reused 1 time for routine husbandry tasks and up to 5 times for research personnel. A method for decontamination of used gowns using Vaporized Hydrogen Peroxide (VHP) was also validated for use in areas where animals are considered high risk such as quarantine, or for fragile immunocompromised rodent colonies.


Assuntos
Animais de Laboratório , Equipamentos Descartáveis , Pandemias , Roupa de Proteção , Técnicos em Manejo de Animais , Animais , Pessoal de Saúde , Abrigo para Animais , Humanos , Camundongos , Pandemias/prevenção & controle , Equipamento de Proteção Individual
17.
Cryobiology ; 99: 1-10, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556359

RESUMO

Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes.


Assuntos
Anopheles , Mosquitos Vetores , Animais , Abelhas , Criopreservação/métodos , Humanos , Resistência a Inseticidas/genética , Controle de Mosquitos , Mosquitos Vetores/genética
18.
medRxiv ; 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32577700

RESUMO

BACKGROUND: SARS-CoV-2 emerged in 2019 and has become a major global pathogen. Its emergence is notable due to its impacts on individuals residing within long term care facilities (LTCFs) such as rehabilitation centers and nursing homes. LTCF residents tend to possess several risk factors for more severe SARS-CoV-2 outcomes, including advanced age and multiple comorbidities. Indeed, residents of LTCFs represent approximately 40% of SARS-CoV-2 deaths in the United States. METHODS: To assess the prevalence and incidence of SARS-CoV-2 among LTCF workers, determine the extent of asymptomatic SARS-CoV-2 infection, and provide information on the genomic epidemiology of the virus within these unique care settings, we collected nasopharyngeal swabs from workers for 8-11 weeks at six Colorado LTCFs, determined the presence and level of viral RNA and infectious virus within these samples, and sequenced 54 nearly complete genomes. FINDINGS: Our data reveal a strikingly high degree of asymptomatic/mildly symptomatic infection, a strong correlation between viral RNA and infectious virus, prolonged infections and persistent RNA in a subset of individuals, and declining incidence over time. INTERPRETATION: Our data suggest that asymptomatic SARS-CoV-2 infected individuals contribute to virus persistence and transmission within the workplace, due to high levels of virus. Genetic epidemiology revealed that SARS-CoV-2 likely spreads between staff within an LTCF. FUNDING: Colorado State University Colleges of Health and Human Sciences, Veterinary Medicine and Biomedical Sciences, Natural Sciences, and Walter Scott, Jr. College of Engineering, the Columbine Health Systems Center for Healthy Aging, and the National Institute of Allergy and Infectious Diseases.

19.
J Clin Microbiol ; 58(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32245831

RESUMO

Identification of biomarkers for latent Mycobacterium tuberculosis infection and risk of progression to tuberculosis (TB) disease are needed to better identify individuals to target for preventive therapy, predict disease risk, and potentially predict preventive therapy efficacy. Our group developed multiple reaction monitoring mass spectrometry (MRM-MS) assays that detected M. tuberculosis peptides in serum extracellular vesicles from TB patients. We subsequently optimized this MRM-MS assay to selectively identify 40 M. tuberculosis peptides from 19 proteins that most commonly copurify with serum vesicles of patients with TB. Here, we used this technology to evaluate if M. tuberculosis peptides can also be detected in individuals with latent TB infection (LTBI). Serum extracellular vesicles from 74 individuals presumed to have latent M. tuberculosis infection (LTBI) based on close contact with a household member with TB or a recent tuberculin skin test (TST) conversion were included in this study. Twenty-nine samples from individuals with no evidence of TB infection by TST and no known exposure to TB were used as controls to establish a threshold to account for nonspecific/background signal. We identified at least one of the 40 M. tuberculosis peptides in 70 (95%) individuals with LTBI. A single peptide from the glutamine synthetase (GlnA1) enzyme was identified in 61/74 (82%) individuals with LTBI, suggesting peptides from M. tuberculosis proteins involved in nitrogen metabolism might be candidates for pathogen-specific biomarkers for detection of LTBI. The detection of M. tuberculosis peptides in serum extracellular vesicles from persons with LTBI represents a potential advance in the diagnosis of LTBI.


Assuntos
Vesículas Extracelulares , Tuberculose Latente , Mycobacterium tuberculosis , Humanos , Tuberculose Latente/diagnóstico , Peptídeos , Teste Tuberculínico
20.
Am J Respir Cell Mol Biol ; 62(3): 354-363, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31545652

RESUMO

Comparisons of infectivity among the clinically important nontuberculous mycobacteria (NTM) species have not been explored in great depth. Rapid-growing mycobacteria, including Mycobacterium abscessus and M. porcinum, can cause indolent but progressive lung disease. Slow-growing members of the M. avium complex are the most common group of NTM to cause lung disease, and molecular approaches can now distinguish between several distinct species of M. avium complex including M. intracellulare, M. avium, M. marseillense, and M. chimaera. Differential infectivity among these NTM species may, in part, account for differences in clinical outcomes and response to treatment; thus, knowing the relative infectivity of particular isolates could increase prognostication accuracy and enhance personalized treatment. Using human macrophages, we investigated the infectivity and virulence of nine NTM species, as well as multiple isolates of the same species. We also assessed their capacity to evade killing by the antibacterial peptide cathelicidin (LL-37). We discovered that the ability of different NTM species to infect macrophages varied among the species and among isolates of the same species. Our biochemical assays implicate modified phospholipids, which may include a phosphatidylinositol or cardiolipin backbone, as candidate antagonists of LL-37 antibacterial activity. The high variation in infectivity and virulence of NTM strains suggests that more detailed microbiological and biochemical characterizations are necessary to increase our knowledge of NTM pathogenesis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/antagonistas & inibidores , Evasão da Resposta Imune/fisiologia , Lipídeos de Membrana/fisiologia , Micobactérias não Tuberculosas/patogenicidade , Fosfolipídeos/fisiologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/imunologia , Cromatografia em Camada Fina , Escherichia coli/efeitos dos fármacos , Humanos , Macrófagos/microbiologia , Macrófagos Alveolares/microbiologia , Lipídeos de Membrana/isolamento & purificação , Micobactérias não Tuberculosas/efeitos dos fármacos , Micobactérias não Tuberculosas/fisiologia , Fosfolipídeos/isolamento & purificação , Filogenia , Especificidade da Espécie , Células THP-1 , Virulência , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...