Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 113515, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461442

RESUMO

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure opacities at varying densities and temperatures relevant to the solar interior and thermal cooling rates in white dwarf stars. The typical temperatures reached at NIF range between 150 and 210 eV, which allow these measurements to be performed experimentally. The captured opacities are crucial to validating radiation-hydrodynamic models that are used in astrophysics. The NIF opacity platform has a unique new capability that allows in situ measurement of the sample expansion. The sample expansion data are used to better understand the plasma conditions in our experiments by inferring the sample density throughout the duration of the laser drive. We present the details of the density measurement technique, data analysis, and recent results for Fe and MgO.

2.
Rev Sci Instrum ; 92(3): 033519, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819987

RESUMO

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure iron opacities at varying densities and temperatures relevant to the solar interior and to verify recent experimental results obtained at the Sandia Z-machine, that diverge from theory. The first set of NIF experiments collected iron opacity data at ∼150 eV to 160 eV and an electron density of ∼7 × 1021 cm-3, with a goal to study temperatures up to ∼210 eV, with electron densities of up to ∼3 × 1022 cm-3. Among several techniques used to infer the temperature of the heated Fe sample, the absolutely calibrated DANTE-2 filtered diode array routinely provides measurements of the hohlraum conditions near the sample. However, the DANTE-2 temperatures are consistently low compared to pre-shot LASNEX simulations for a range of laser drive energies. We have re-evaluated the estimated uncertainty in the reported DANTE-2 temperatures and also the error generated by varying channel participation in the data analysis. An uncertainty of ±5% or better can be achieved with appropriate spectral coverage, channel participation, and metrology of the viewing slot.

3.
Phys Rev Lett ; 116(25): 255003, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391731

RESUMO

A new class of inertial fusion capsules is presented that combines multishell targets with laser direct drive at low intensity (2.8×10^{14} W/cm^{2}) to achieve robust ignition. The targets consist of three concentric, heavy, metal shells, enclosing a volume of tens of µg of liquid deuterium-tritium fuel. Ignition is designed to occur well "upstream" from stagnation, with minimal pusher deceleration to mitigate interface Rayleigh-Taylor growth. Laser intensities below thresholds for laser plasma instability and cross beam energy transfer facilitate high hydrodynamic efficiency (∼10%).

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 066404, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16906985

RESUMO

A model that solves simultaneously both the electron and atomic kinetics was used to generate a synthetic He alpha and satellite x-ray spectra to characterize a high intensity ultrashort laser driven Ar cluster target experiment. In particular, level populations were obtained from a detailed collisional-radiative model where collisional rates were computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. In addition, a particle-in-cell simulation was used to model the laser interaction with the cluster target and provided the initial electron energy distribution function (EEDF) for the Boltzmann solver. This study suggests that a high density average, high, of 3.2 x 10(20) cm(-3) was held by the system for a time, delta tau, of 5.7 ps, and during this time the plasma was in a highly nonequilibrium state in both the EEDF and the ion level populations.

5.
Phys Rev Lett ; 95(24): 245003, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16384390

RESUMO

Simulations are reported of the Thomson scatter spectrum of electrostatic waves (ESWs) excited in single laser hot spots by backward stimulated Raman scattering (BSRS). Under conditions similar those in the recent experiments of Kline et al. [Phys. Rev. Lett. 94, 175003 (2005)], a spectral streak, resulting from the trapping-induced frequency shift of the ESW, is found for high wave-number ESWs, similar to the observations. This shift and parametric frequency matching lead to isolated BSRS pulses. Modes with acoustic dispersion, resulting from the trapping-modified electron velocity distribution, can enhance the frequency range of the streak.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(1 Pt 2): 015401, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16090028

RESUMO

Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 2): 056410, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15600768

RESUMO

A laser-plasma-based source of relativistic electrons is described in detail, and analyzed in two dimensions using theoretical and numeric techniques. Two laser beams are focused in a plasma, one exciting a wake-field electron plasma wave while another locally alters some electron trajectories in such a way that they can be trapped and accelerated by the wave. Previous analyses dealt only with one-dimensional models. In this paper two-dimensional particle-in-cell simulations and analysis of single particle trajectories show that the radial wake field plays an important role. The simulation results are interpreted to evaluate the accelerated electron beam's properties and compared with existing devices.

8.
Phys Rev Lett ; 88(13): 135004, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11955106

RESUMO

The successful utilization of an ion channel in a plasma to wiggle a 28.5-GeV electron beam to obtain broadband x-ray radiation is reported. The ion channel is induced by the electron bunch as it propagates through an underdense 1.4-meter-long lithium plasma. The quadratic density dependence of the spontaneously emitted betatron x-ray radiation and the divergence angle of approximately (1-3)x10(-4) radian of the forward-emitted x-rays as a consequence of betatron motion in the ion channel are in good agreement with theory. The absolute photon yield and the peak spectral brightness at 14.2-keV photon energy are estimated.

9.
Phys Rev Lett ; 88(15): 154801, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11955201

RESUMO

The transverse dynamics of a 28.5-GeV electron beam propagating in a 1.4 m long, (0-2)x10(14) cm(-3) plasma are studied experimentally in the underdense or blowout regime. The transverse component of the wake field excited by the short electron bunch focuses the bunch, which experiences multiple betatron oscillations as the plasma density is increased. The spot-size variations are observed using optical transition radiation and Cherenkov radiation. In this regime, the behavior of the spot size as a function of the plasma density is well described by a simple beam-envelope model. Dynamic changes of the beam envelope are observed by time resolving the Cherenkov light.

10.
Phys Rev Lett ; 88(12): 125001, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11909466

RESUMO

This Letter examines the electron-hosing instability in relation to the drivers of current and future plasma-wakefield experiments using fully three-dimensional particle-in-cell simulation models. The simulation results are compared to numerical solutions and to asymptotic solutions of the idealized analytic equations. The measured growth rates do not agree with the existing theory and the behavior is shown to depend sensitively on beam length, shape, and charge. We find that even when severe hosing occurs the wake can remain relatively stable.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(4 Pt 2): 045501, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11690081

RESUMO

Plasma-wakefield excitation by positron beams is examined in a regime for which the plasma dynamics are highly nonlinear. Three dimensional particle-in-cell simulations and physical models are presented. In the nonlinear wake regime known as the blowout regime for electrons, positron wakes exhibit an analogous "suck-in" behavior. Although analogous, the two wakefield cases are quite different in terms of their amplitudes, wavelengths, waveforms, transverse profiles, and plasma density dependence. In a homogenous plasma, nonlinear positron wakes are smaller than those of the corresponding electron case. However, hollow channels are shown to enhance the amplitude of the positron wakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...