Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 14(1): 2132903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36343662

RESUMO

The gut microbiome of vertebrates is capable of numerous biotransformations of bile acids, which are responsible for intestinal lipid digestion and function as key nutrient-signaling molecules. The human liver produces bile acids from cholesterol predominantly in the A/B-cis orientation in which the sterol rings are "kinked", as well as small quantities of A/B-trans oriented "flat" stereoisomers known as "primary allo-bile acids". While the complex multi-step bile acid 7α-dehydroxylation pathway has been well-studied for conversion of "kinked" primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, the enzymatic basis for the formation of "flat" stereoisomers allo-deoxycholic acid (allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has remained unsolved for three decades. Here, we present a novel mechanism by which Firmicutes generate the "flat" bile acids allo-DCA and allo-LCA. The BaiA1 was shown to catalyze the final reduction from 3-oxo-allo-DCA to allo-DCA and 3-oxo-allo-LCA to allo-LCA. Phylogenetic and metagenomic analyses of human stool samples indicate that BaiP and BaiJ are encoded only in Firmicutes and differ from membrane-associated bile acid 5α-reductases recently reported in Bacteroidetes that indirectly generate allo-LCA from 3-oxo-Δ4-LCA. We further map the distribution of baiP and baiJ among Firmicutes in human metagenomes, demonstrating an increased abundance of the two genes in colorectal cancer (CRC) patients relative to healthy individuals.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Animais , Humanos , Firmicutes/metabolismo , Filogenia , Ácido Litocólico/metabolismo , Ácido Desoxicólico/metabolismo
2.
J Biol Chem ; 298(5): 101896, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378131

RESUMO

Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal ß-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 µM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte , Ruminococcus , Amilopectina/metabolismo , Amilose/metabolismo , Proteínas de Transporte/metabolismo , Carboidratos da Dieta , Humanos , Amido/metabolismo
3.
Sci Adv ; 7(30)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34301599

RESUMO

Bile salt synthesis, secretion into the intestinal lumen, and resorption in the ileum occur in all vertebrate classes. In mammals, bile salt composition is determined by host and microbial enzymes, affecting signaling through the bile salt-binding transcription factor farnesoid X receptor (Fxr). However, these processes in other vertebrate classes remain poorly understood. We show that key components of hepatic bile salt synthesis and ileal transport pathways are conserved and under control of Fxr in zebrafish. Zebrafish bile salts consist primarily of a C27 bile alcohol and a C24 bile acid that undergo multiple microbial modifications including bile acid deconjugation that augments Fxr activity. Using single-cell RNA sequencing, we provide a cellular atlas of the zebrafish intestinal epithelium and uncover roles for Fxr in transcriptional and differentiation programs in ileal and other cell types. These results establish zebrafish as a nonmammalian vertebrate model for studying bile salt metabolism and Fxr signaling.


Assuntos
Ácidos e Sais Biliares , Peixe-Zebra , Animais , Ácidos e Sais Biliares/metabolismo , Intestinos , Fígado/metabolismo , Mamíferos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo
4.
Gut Microbes ; 13(1): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33938389

RESUMO

Bile acids are detergent molecules that solubilize dietary lipids and lipid-soluble vitamins. Humans synthesize bile acids with α-orientation hydroxyl groups which can be biotransformed by gut microbiota to toxic, hydrophobic bile acids, such as deoxycholic acid (DCA). Gut microbiota can also convert hydroxyl groups from the α-orientation through an oxo-intermediate to the ß-orientation, resulting in more hydrophilic, less toxic bile acids. This interconversion is catalyzed by regio- (C-3 vs. C-7) and stereospecific (α vs. ß) hydroxysteroid dehydrogenases (HSDHs). So far, genes encoding the urso- (7α-HSDH & 7ß-HSDH) and iso- (3α-HSDH & 3ß-HSDH) bile acid pathways have been described. Recently, multiple human gut clostridia were reported to encode 12α-HSDH, which interconverts DCA and 12-oxolithocholic acid (12-oxoLCA). 12ß-HSDH completes the epi-bile acid pathway by converting 12-oxoLCA to the 12ß-bile acid denoted epiDCA; however, a gene(s) encoding this enzyme has yet to be identified. We confirmed 12ß-HSDH activity in cultures of Clostridium paraputrificum ATCC 25780. From six candidate C. paraputrificum ATCC 25780 oxidoreductase genes, we discovered the first gene (DR024_RS09610) encoding bile acid 12ß-HSDH. Phylogenetic analysis revealed unforeseen diversity for 12ß-HSDH, leading to validation of two additional bile acid 12ß-HSDHs through a synthetic biology approach. By comparison to a previous phylogenetic analysis of 12α-HSDH, we identified the first potential C-12 epimerizing strains: Collinsella tanakaei YIT 12063 and Collinsella stercoris DSM 13279. A Hidden Markov Model search against human gut metagenomes located putative 12ß-HSDH genes in about 30% of subjects within the cohorts analyzed, indicating this gene is relevant in the human gut microbiome.


Assuntos
Ácidos e Sais Biliares/metabolismo , Clostridium/enzimologia , Clostridium/genética , Clostridium/metabolismo , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Actinobacteria/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Clostridium/microbiologia , DNA Bacteriano , Microbioma Gastrointestinal , Humanos , Ácido Litocólico/metabolismo , NADP/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Microorganisms ; 9(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668351

RESUMO

Bile acids (BAs) and glucocorticoids are steroid hormones derived from cholesterol that are important signaling molecules in humans and other vertebrates. Hydroxysteroid dehydrogenases (HSDHs) are encoded both by the host and by their resident gut microbiota, and they reversibly convert steroid hydroxyl groups to keto groups. Pairs of HSDHs can reversibly epimerize steroids from α-hydroxy conformations to ß-hydroxy, or ß-hydroxy to ω-hydroxy in the case of ω-muricholic acid. These reactions often result in products with drastically different physicochemical properties than their precursors, which can result in steroids being activators or inhibitors of host receptors, can affect solubility in fecal water, and can modulate toxicity. Microbial HSDHs modulate sterols associated with diseases such as colorectal cancer, liver cancer, prostate cancer, and polycystic ovary syndrome. Although the role of microbial HSDHs is not yet fully elucidated, they may have therapeutic potential as steroid pool modulators or druggable targets in the future. In this review, we explore metabolism of BAs and glucocorticoids with a focus on biotransformation by microbial HSDHs.

6.
Mol Cell Endocrinol ; 525: 111174, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33503463

RESUMO

Advances in technology are only beginning to reveal the complex interactions between hosts and their resident microbiota that have co-evolved over centuries. In this review, we present compelling evidence that implicates the host-associated microbiome in the generation of 11ß-hydroxyandrostenedione, leading to the formation of potent 11-oxy-androgens. Microbial steroid-17,20-desmolase cleaves the side-chain of glucocorticoids (GC), including cortisol (and its derivatives of cortisone, 5α-dihydrocortisol, and also (allo)- 3α, 5α-tetrahydrocortisol, but not 3α-5ß-tetrahydrocortisol) and drugs (prednisone and dexamethasone). In addition to side-chain cleavage, we discuss the gut microbiome's robust potential to transform a myriad of steroids, mirroring much of the host's metabolism. We also explore the overlooked role of intestinal steroidogenesis and efflux pumps as a potential route for GC transport into the gut. Lastly, we propose several health implications from microbial steroid-17,20-desmolase function, including aberrant mineralocorticoid, GC, and androgen receptor signaling in colonocytes, immune cells, and prostate cells, which may exacerbate disease states.


Assuntos
Bactérias/enzimologia , Trato Gastrointestinal/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Animais , Microbioma Gastrointestinal , Saúde , Humanos , Hidrocortisona/química , Hidrocortisona/metabolismo
7.
BMC Microbiol ; 21(1): 24, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430766

RESUMO

BACKGROUND: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS: This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Berberina/administração & dosagem , Ácidos e Sais Biliares/metabolismo , RNA Ribossômico 16S/genética , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Berberina/farmacologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Masculino , Metabolômica , Camundongos , Análise de Sequência de RNA , Especificidade da Espécie
8.
Gut Microbes ; 13(1): 1-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33382950

RESUMO

Extibacter muris is a newly described mouse gut bacterium which metabolizes cholic acid (CA) to deoxycholic acid (DCA) via 7α-dehydroxylation. Although bile acids influence metabolic and inflammatory responses, few in vivo models exist for studying their metabolism and impact on the host. Mice were colonized from birth with the simplified community Oligo-MM12 with or without E. muris. As the metabolism of bile acids is known to affect lipid homeostasis, mice were fed either a low- or high-fat diet for eight weeks before sampling and analyses targeting the gut and liver. Multiple Oligo-MM12 strains were capable of deconjugating primary bile acids in vitro. E. muris produced DCA from CA either as pure compound or in mouse bile. This production was inducible by CA in vitro. Ursodeoxycholic, chenodeoxycholic, and ß-muricholic acid were not metabolized under the conditions tested. All gnotobiotic mice were stably colonized with E. muris, which showed higher relative abundances after HF diet feeding. The presence of E. muris had minor, diet-dependent effects on Oligo-MM12 communities. The secondary bile acids DCA and surprisingly LCA and their taurine conjugates were detected exclusively in E. muris-colonized mice. E. muris colonization did not influence body weight, white adipose tissue mass, liver histopathology, hepatic aspartate aminotransferase, or blood levels of cholesterol, insulin, and paralytic peptide (PP). However, proteomics revealed shifts in hepatic pathways involved in amino acid, glucose, lipid, energy, and drug metabolism in E. muris-colonized mice. Liver fatty acid composition was substantially altered by dietary fat but not by E. muris.In summary, E. muris stably colonized the gut of mice harboring a simplified community and produced secondary bile acids, which affected proteomes in the liver. This new gnotobiotic mouse model can now be used to study the pathophysiological role of secondary bile acids in vivo.


Assuntos
Ácidos e Sais Biliares/metabolismo , Clostridiales/metabolismo , Microbioma Gastrointestinal/fisiologia , Fígado/fisiologia , Animais , Biotransformação , Clostridiales/crescimento & desenvolvimento , Dieta Hiperlipídica , Vida Livre de Germes , Intestinos/microbiologia , Fígado/metabolismo , Camundongos
9.
Nat Commun ; 11(1): 6389, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319778

RESUMO

Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called 'Pig intestinal bacterial collection' (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Filogenia , Suínos/microbiologia , Idoso de 80 Anos ou mais , Animais , Bactérias/genética , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Biodiversidade , Clostridium/classificação , Clostridium/genética , Clostridium/isolamento & purificação , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Especificidade de Hospedeiro , Humanos , Masculino , Metagenoma , Família Multigênica , RNA Ribossômico 16S
10.
J Biol Chem ; 294(32): 12040-12053, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209107

RESUMO

Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20ß-hydroxysteroid dehydrogenase (20ß-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20ß-dihydrocortisol. Recently, the gene encoding 20ß-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20ß-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20ß-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta Here, the putative B. adolescentis 20ß-HSDH was cloned, overexpressed, and purified. 20ß-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20ß-HSDH in both the apo- and holo-forms at 2.0-2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20ß-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium adolescentis/enzimologia , Hidroxiesteroide Desidrogenases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Hidrocortisona/química , Hidrocortisona/metabolismo , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/genética , Cinética , Mutagênese Sítio-Dirigida , NAD/química , NAD/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...