Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37190384

RESUMO

We study the evolution of the energy and magnetic moment of a quantum charged particle placed in a homogeneous magnetic field, when this field changes its sign adiabatically. We show that after a single magnetic field passage through zero value, the famous adiabatic invariant ratio of energy to frequency is reestablished again, but with a proportionality coefficient higher than in the initial state. The concrete value of this proportionality coefficient depends on the power index of the frequency dependence on time near zero point. In particular, the adiabatic ratio of the initial ground state (with zero radial and angular quantum numbers) triplicates if the frequency tends to zero linearly as a function of time. If the Larmor frequency attains zero more than once, the adiabatic proportionality coefficient strongly depends on the lengths of the time intervals between zero points, so that the mean energy behavior can be quasi-stochastic after many passages through zero value. The original Born-Fock adiabatic theorem does not work after the frequency passes through zero. However, its generalization is found: the initial Fock state becomes a wide superposition of many instantaneous Fock states, whose weights do not depend on time in the new adiabatic regime.

2.
Entropy (Basel) ; 25(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36673143

RESUMO

We study the evolution of the energy of a harmonic oscillator when its frequency slowly varies with time and passes through a zero value. We consider both the classical and quantum descriptions of the system. We show that after a single frequency passage through a zero value, the famous adiabatic invariant ratio of energy to frequency (which does not hold for a zero frequency) is reestablished again, but with the proportionality coefficient dependent on the initial state. The dependence on the initial state disappears after averaging over the phases of initial states with the same energy (in particular, for the initial vacuum, the Fock and thermal quantum states). In this case, the mean proportionality coefficient is always greater than unity. The concrete value of the mean proportionality coefficient depends on the power index of the frequency dependence on a time near the zero point. In particular, the mean energy triplicates if the frequency tends to zero linearly. If the frequency attains zero more than once, the adiabatic proportionality coefficient strongly depends on the lengths of time intervals between zero points, so that the mean energy behavior becomes quasi-stochastic after many passages through a zero value. The original Born-Fock theorem does not work after the frequency passes through zero. However, its generalization is found: the initial Fock state becomes a wide superposition of many Fock states, whose weights do not depend on time in the new adiabatic regime. When the mean energy triplicates, the initial Nth Fock state becomes a superposition of, roughly speaking, 6N states, distributed nonuniformly. The initial vacuum and low-order Fock states become squeezed, as well as the initial thermal states with low values of the mean energy.

3.
Entropy (Basel) ; 23(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34945884

RESUMO

We consider a quantum spinless nonrelativistic charged particle moving in the xy plane under the action of a time-dependent magnetic field, described by means of the linear vector potential A=B(t)-y(1+α),x(1-α)/2, with two fixed values of the gauge parameter α: α=0 (the circular gauge) and α=1 (the Landau gauge). While the magnetic field is the same in all the cases, the systems with different values of the gauge parameter are not equivalent for nonstationary magnetic fields due to different structures of induced electric fields, whose lines of force are circles for α=0 and straight lines for α=1. We derive general formulas for the time-dependent mean values of the energy and magnetic moment, as well as for their variances, for an arbitrary function B(t). They are expressed in terms of solutions to the classical equation of motion ε¨+ωα2(t)ε=0, with ω1=2ω0. Explicit results are found in the cases of the sudden jump of magnetic field, the parametric resonance, the adiabatic evolution, and for several specific functions B(t), when solutions can be expressed in terms of elementary or hypergeometric functions. These examples show that the evolution of the mentioned mean values can be rather different for the two gauges, if the evolution is not adiabatic. It appears that the adiabatic approximation fails when the magnetic field goes to zero. Moreover, the sudden jump approximation can fail in this case as well. The case of a slowly varying field changing its sign seems especially interesting. In all the cases, fluctuations of the magnetic moment are very strong, frequently exceeding the square of the mean value.

4.
Entropy (Basel) ; 23(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069501

RESUMO

The problem of finding covariance matrices that remain constant in time for arbitrary multi-dimensional quadratic Hamiltonians (including those with time-dependent coefficients) is considered. General solutions are obtained.

5.
Entropy (Basel) ; 22(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-33286749

RESUMO

We consider the problem of minimization of products of mean values of the high powers of operators x and p. From this point of view, we study several two-term superpositions of the Fock states, as well as three popular families of infinite superpositions: squeezed states, even/odd coherent states, and orthogonal even coherent states (or compass states). The new element is the analysis of products of the corresponding (co)variances and the related generalized (Robertson-Schrödinger) intelligent states (RSIS). In particular, we show that both Fock and pure Gaussian homogeneous states are RSIS for the fourth powers (but not for the sixth ones). We show that lower bounds of the high-order uncertainty products can be significantly below the vacuum values. In this connection, the concept of significant and weak high-order squeezing is introduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA