Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 128(24): 5005-15, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11748137

RESUMO

Amphiphysin family members are implicated in synaptic vesicle endocytosis, actin localization and one isoform is an autoantigen in neurological autoimmune disorder; however, there has been no genetic analysis of Amphiphysin function in higher eukaryotes. We show that Drosophila Amphiphysin is localized to actin-rich membrane domains in many cell types, including apical epithelial membranes, the intricately folded apical rhabdomere membranes of photoreceptor neurons and the postsynaptic density of glutamatergic neuromuscular junctions. Flies that lack all Amphiphysin function are viable, lack any observable endocytic defects, but have abnormal localization of the postsynaptic proteins Discs large, Lethal giant larvae and Scribble, altered synaptic physiology, and behavioral defects. Misexpression of Amphiphysin outside its normal membrane domain in photoreceptor neurons results in striking morphological defects. The strong misexpression phenotype coupled with the mild mutant and lack of phenotypes suggests that Amphiphysin acts redundantly with other proteins to organize specialized membrane domains within a diverse array of cell types.


Assuntos
Proteínas do Citoesqueleto , Proteínas de Drosophila , Proteínas do Tecido Nervoso/isolamento & purificação , Junção Neuromuscular/química , Sinapses/química , Membranas Sinápticas/química , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Compartimento Celular , Polaridade Celular , Drosophila , Endocitose , Proteínas do Olho/genética , Proteínas do Olho/isolamento & purificação , Larva , Dados de Sequência Molecular , Morfogênese , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/embriologia , Junção Neuromuscular/patologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Isoformas de Proteínas/genética , Homologia de Sequência de Aminoácidos , Sinapses/patologia , Membranas Sinápticas/patologia , Vesículas Sinápticas
2.
Dev Cell ; 1(5): 587-8, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11709176

RESUMO

A recent study identifies a novel nonautonomous signaling pathway that regulates cell migration and differentiation in early Drosophila mesodermal tissues.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Mesoderma/citologia , Transdução de Sinais , Animais , Diferenciação Celular , Movimento Celular , Drosophila/citologia , Proteínas de Drosophila/genética , Mesoderma/metabolismo , Morfogênese
3.
Development ; 128(20): 4103-12, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11641232

RESUMO

In many organisms, single neural stem cells can generate both neurons and glia. How are these different cell types produced from a common precursor? In Drosophila, glial cells missing (gcm) is necessary and sufficient to induce glial development in the CNS. gcm mRNA has been reported to be asymmetrically localized to daughter cells during precursor cell division, allowing the daughter cell to produce glia while precursor cell generates neurons. We show that (1) gcm mRNA is uniformly distributed during precursor cell divisions; (2) the Prospero transcription factor is asymmetrically localized into the glial-producing daughter cell; (3) Prospero is required to upregulate gcm expression and induce glial development; and (4) mislocalization of Prospero to the precursor cell leads to ectopic gcm expression and the production of extra glia. We propose a novel model for the separation of glia and neuron fates in mixed lineages in which the asymmetric localization of Prospero results in upregulation of gcm expression and initiation of glial development in only precursor daughter cells.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas de Drosophila , Drosophila/embriologia , Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição , Animais , Diferenciação Celular , Movimento Celular , Polaridade Celular , Sistema Nervoso Central/citologia , Proteínas de Ligação a DNA , Drosophila/genética , Genes de Insetos , Hibridização in Situ Fluorescente , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Neurológicos , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Neurônios/citologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Nucleares/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Distribuição Tecidual , Transativadores/genética , Transativadores/metabolismo
4.
Cell ; 106(4): 511-21, 2001 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-11525736

RESUMO

Neural precursors often generate distinct cell types in a specific order, but the intrinsic or extrinsic cues regulating the timing of cell fate specification are poorly understood. Here we show that Drosophila neural precursors (neuroblasts) sequentially express the transcription factors Hunchback --> Krüppel --> Pdm --> Castor, with differentiated progeny maintaining the transcription factor profile present at their birth. Hunchback is necessary and sufficient for first-born cell fates, whereas Krüppel is necessary and sufficient for second-born cell fates; this is observed in multiple lineages and is independent of the cell type involved. We propose that Hunchback and Krüppel control early-born temporal identity in neuroblast cell lineages.


Assuntos
Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Neurônios/fisiologia , Proteínas Repressoras , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Fatores de Transcrição Kruppel-Like , Morfogênese/genética , Morfogênese/fisiologia , Neurônios/citologia , Fatores do Domínio POU , Fatores de Tempo , Fatores de Transcrição/genética
5.
Curr Opin Cell Biol ; 13(1): 68-75, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11163136

RESUMO

Both Drosophila neuroblasts and Caenorhabditis elegans zygotes use a conserved protein complex to establish cell polarity and regulate spindle orientation. Mammalian epithelia also use this complex to regulate apical/basal polarity. Recent results have allowed us to compare the mechanisms regulating asymmetric cell division in Drosophila neuroblasts and the C. elegans zygote.


Assuntos
Caenorhabditis elegans/embriologia , Drosophila/embriologia , Sistema Nervoso/embriologia , Neurônios/citologia , Zigoto/citologia , Animais , Caenorhabditis elegans/citologia , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Drosophila/citologia , Humanos , Sistema Nervoso/citologia , Neurônios/fisiologia , Zigoto/crescimento & desenvolvimento
6.
Nat Cell Biol ; 3(1): E7-9, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11146637
7.
Nature ; 408(6812): 596-600, 2000 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11117748

RESUMO

Drosophila neuroblasts are a model system for studying asymmetric cell division: they divide unequally to produce an apical neuroblast and a basal ganglion mother cell that differ in size, mitotic activity and developmental potential. During neuroblast mitosis, an apical protein complex orients the mitotic spindle and targets determinants of cell fate to the basal cortex, but the mechanism of each process is unknown. Here we show that the tumour-suppressor genes lethal giant larvae (lgl) and discs large (dlg) regulate basal protein targeting, but not apical complex formation or spindle orientation, in both embryonic and larval neuroblasts. Dlg protein is apically enriched and is required for maintaining cortical localization of Lgl protein. Basal protein targeting requires microfilament and myosin function, yet the lgl phenotype is strongly suppressed by reducing levels of myosin II. We conclude that Dlg and Lgl promote, and myosin II inhibits, actomyosin-dependent basal protein targeting in neuroblasts.


Assuntos
Diacetil/análogos & derivados , Proteínas de Drosophila , Genes Supressores de Tumor , Proteínas de Insetos/genética , Neurônios/citologia , Proteínas Supressoras de Tumor , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Polaridade Celular , Diacetil/farmacologia , Drosophila , Genes de Insetos , Proteínas de Insetos/fisiologia , Mitose , Dados de Sequência Molecular , Miosinas/antagonistas & inibidores , Miosinas/fisiologia , Transporte Proteico
8.
Dev Biol ; 224(2): 362-72, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10926773

RESUMO

An important question in neurobiology is how different cell fates are established along the dorsoventral (DV) axis of the central nervous system (CNS). Here we investigate the origins of DV patterning within the Drosophila CNS. The earliest sign of neural DV patterning is the expression of three homeobox genes in the neuroectoderm-ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh)-which are expressed in ventral, intermediate, and dorsal columns of neuroectoderm, respectively. Previous studies have shown that the Dorsal, Decapentaplegic (Dpp), and EGF receptor (Egfr) signaling pathways regulate embryonic DV patterning, as well as aspects of CNS patterning. Here we describe the earliest expression of each DV column gene (vnd, ind, and msh), the regulatory relationships between all three DV column genes, and the role of the Dorsal, Dpp, and Egfr signaling pathways in defining vnd, ind, and msh expression domains. We confirm that the vnd domain is established by Dorsal and maintained by Egfr, but unlike a previous report we show that vnd is not regulated by Dpp signaling. We show that ind expression requires both Dorsal and Egfr signaling for activation and positioning of its dorsal border, and that abnormally high Dpp can repress ind expression. Finally, we show that the msh domain is defined by repression: it occurs only where Dpp, Vnd, and Ind activity is low. We conclude that the initial diversification of cell fates along the DV axis of the CNS is coordinately established by Dorsal, Dpp, and Egfr signaling pathways. Understanding the mechanisms involved in patterning vnd, ind, and msh expression is important, because DV columnar homeobox gene expression in the neuroectoderm is an early, essential, and evolutionarily conserved step in generating neuronal diversity along the DV axis of the CNS.


Assuntos
Padronização Corporal , Proteínas de Drosophila , Drosophila/embriologia , Receptores ErbB/metabolismo , Proteínas de Insetos/metabolismo , Sistema Nervoso/embriologia , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição , Animais , Drosophila/metabolismo , Sistema Nervoso/metabolismo
10.
Development ; 126(21): 4653-89, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10518486

RESUMO

An experimental analysis of neurogenesis requires a detailed understanding of wild-type neural development. Recent DiI cell lineage studies have begun to elucidate the family of neurons and glia produced by each Drosophila embryonic neural precursor (neuroblast). Here we use DiI labeling to extend and clarify previous studies, but our analysis differs from previous studies in four major features: we analyze and compare lineages of every known embryonic neuroblast; we use an in vivo landmark (engrailed-GFP) to increase the accuracy of neuroblast identification; we use confocal fluorescence and Nomarski microscopy to collect three-dimensional data in living embryos simultaneously for each DiI-labeled clone, the engrailed-GFP landmark, and the entire CNS and muscle target field (Nomarski images); and finally, we analyze clones very late in embryonic development, which reveals novel cell types and axon/dendrite complexity. We identify the parental neuroblasts for all the cell types of the embryonic CNS: motoneurons, intersegmental interneurons, local interneurons, glia and neurosecretory cells (whose origins had never been determined). We identify muscle contacts for every thoracic and abdominal motoneuron at stage 17. We define the parental neuroblasts for neurons or glia expressing well-known molecular markers or neurotransmitters. We correlate Drosophila cell lineage data with information derived from other insects. In addition, we make the following novel conclusions: (1) neuroblasts at similar dorsoventral positions, but not anteroposterior positions, often generate similar cell lineages, and (2) neuroblasts at similar dorsoventral positions often produce the same motoneuron subtype: ventral neuroblasts typically generate motoneurons with dorsal muscle targets, while dorsal neuroblasts produce motoneurons with ventral muscle targets. Lineage data and movies can be found at http://www.biologists. com/Development/movies/dev8623.html http://www.neuro.uoregon. edu/doelab/lineages/


Assuntos
Drosophila/embriologia , Músculos/citologia , Músculos/embriologia , Neurônios/citologia , Neurônios/fisiologia , Animais , Axônios , Linhagem da Célula , Tamanho Celular , Células Clonais , Drosophila/genética , Embrião não Mamífero/inervação , Indução Embrionária , Insetos/embriologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Músculos/inervação , Neuroglia/citologia , Neuroglia/fisiologia
11.
Development ; 126(10): 2063-71, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10207132

RESUMO

The adult external sense organ precursor (SOP) lineage is a model system for studying asymmetric cell division. Adult SOPs divide asymmetrically to produce IIa and IIb daughter cells; IIa generates the external socket (tormogen) and hair (trichogen) cells, while IIb generates the internal neuron and sheath (thecogen) cells. Here we investigate the expression and function of prospero in the adult SOP lineage. Although Prospero is asymmetrically localized in embryonic SOP lineage, this is not observed in the adult SOP lineage: Prospero is first detected in the IIb nucleus and, during IIb division, it is cytoplasmic and inherited by both neuron and sheath cells. Subsequently, Prospero is downregulated in the neuron but maintained in the sheath cell. Loss of prospero function leads to 'double bristle' sense organs (reflecting a IIb-to-IIa transformation) or 'single bristle' sense organs with abnormal neuronal differentiation (reflecting defective IIb development). Conversely, ectopic prospero expression results in duplicate neurons and sheath cells and a complete absence of hair/socket cells (reflecting a IIa-to-IIb transformation). We conclude that (1) despite the absence of asymmetric protein localization, prospero expression is restricted to the IIb cell but not its IIa sibling, (2) prospero promotes IIb cell fate and inhibits IIa cell fate, and (3) prospero is required for proper axon and dendrite morphology of the neuron derived from the IIb cell. Thus, prospero plays a fundamental role in establishing binary IIa/IIb sibling cell fates without being asymmetrically localized during SOP division. Finally, in contrast to previous studies, we find that the IIb cell divides prior to the IIa cell in the SOP lineage.


Assuntos
Proteínas de Drosophila , Drosophila/citologia , Proteínas de Homeodomínio/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Proteínas Nucleares/biossíntese , Fatores de Transcrição/biossíntese , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Masculino , Neurônios/citologia , Ratos , Órgãos dos Sentidos/citologia , Células-Tronco
12.
Genes Dev ; 12(22): 3591-602, 1998 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-9832510

RESUMO

One of the first steps in neurogenesis is the diversification of cells along the dorsoventral axis. In Drosophila the central nervous system develops from three longitudinal columns of cells: ventral cells that express the vnd/nk2 homeobox gene, intermediate cells, and dorsal cells that express the msh homeobox gene. Here we describe a new Drosophila homeobox gene, intermediate neuroblasts defective (ind), which is expressed specifically in the intermediate column cells. ind is essential for intermediate column development: Null mutants have a transformation of intermediate to dorsal column neuroectoderm fate, and only 10% of the intermediate column neuroblasts develop. The establishment of dorsoventral column identity involves negative regulation: Vnd represses ind in the ventral column, whereas ind represses msh in the intermediate column. Vertebrate genes closely related to vnd (Nkx2.1 and Nkx2.2), ind (Gsh1 and Gsh2), and msh (Msx1 and Msx3) are expressed in corresponding ventral, intermediate, and dorsal domains during vertebrate neurogenesis, raising the possibility that dorsoventral patterning within the central nervous system is evolutionarily conserved.


Assuntos
Padronização Corporal/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas de Drosophila , Drosophila/genética , Genes Homeobox/genética , Neurônios/citologia , Proteínas Repressoras , Transativadores , Sequência de Aminoácidos , Animais , Sequência de Bases , Pegada de DNA , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes de Insetos/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição
13.
Genes Dev ; 12(22): 3603-12, 1998 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-9832511

RESUMO

The Drosophila CNS develops from three columns of neuroectodermal cells along the dorsoventral (DV) axis: ventral, intermediate, and dorsal. In this and the accompanying paper, we investigate the role of two homeobox genes, vnd and ind, in establishing ventral and intermediate cell fates within the Drosophila CNS. During early neurogenesis, Vnd protein is restricted to ventral column neuroectoderm and neuroblasts; later it is detected in a complex pattern of neurons. We use molecular markers that distinguish ventral, intermediate, and dorsal column neuroectoderm and neuroblasts, and a cell lineage marker for selected neuroblasts, to show that loss of vnd transforms ventral into intermediate column identity and that specific ventral neuroblasts fail to form. Conversely, ectopic vnd produces an intermediate to ventral column transformation. Thus, vnd is necessary and sufficient to induce ventral fates and repress intermediate fates within the Drosophila CNS. Vertebrate homologs of vnd (Nkx2.1 and 2.2) are similarly expressed in the ventral CNS, raising the possibility that DV patterning within the CNS is evolutionarily conserved.


Assuntos
Padronização Corporal/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas de Drosophila , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Animais , Drosophila/embriologia , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Neurônios/citologia , Fatores de Transcrição
14.
J Neurobiol ; 36(2): 111-27, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9712299

RESUMO

Our goal in this review is to explore the relationship between Drosophila and vertebrate neural stem cell development by comparing progress in each system with the aim of answering several central questions in stem cell biology: (a) How are stem cells formed? (b) Do stem cells divide symmetrically or asymmetrically? (c) How is stem cell fate maintained? (d) How is stem cell differentiation initiated? (e) How are different stem cell fates determined? (f) How "plastic" are different neural stem cell fates? (g) How do neural stem cells produce different progeny? and (h) What regulates stem cell proliferation versus quiescence? Not surprisingly, research in Drosophila and vertebrate systems each have their own biases, strengths, and weaknesses; we hope that by directly comparing progress in each field, new experiments and interpretations in both vertebrate and Drosophila research will become apparent. It has become increasingly clear that vertebrates and Drosophila share many fundamental mechanisms of neurogenesis, validating a comparative approach.


Assuntos
Drosophila/anatomia & histologia , Neurônios/citologia , Células-Tronco/citologia , Vertebrados/anatomia & histologia , Animais , Divisão Celular/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Células-Tronco/fisiologia
15.
Int J Dev Biol ; 42(3): 379-83, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9654022

RESUMO

Drosophila CNS precursors, neuroblasts, repeatedly divide to produce a large neuroblast and a smaller GMC. This division is asymmetric with regard to sibling cell size, mitotic potential and gene expression. Recent work has identified a number of molecules that show a polarized distribution during neuroblast mitosis: prospero RNA and Inscuteable, Miranda, Prospero, Staufen, and Numb proteins. The process of asymmetric localization of proteins and RNAs is cell cycle dependent, microfilament dependent and coordinated with the positioning of the mitotic spindle, which results in the unequal distribution of cell fate determinants to a specific daughter cell at cytokinesis.


Assuntos
Padronização Corporal , Sistema Nervoso Central/embriologia , Proteínas de Drosophila , Drosophila/embriologia , Fatores de Transcrição , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/fisiologia , Morfogênese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neuropeptídeos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fuso Acromático/genética , Fuso Acromático/fisiologia
16.
Development ; 125(10): 1857-65, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9550718

RESUMO

In Drosophila, most neuronal siblings have different fates ('A/B'). Here we demonstrate that mutations in sanpodo, a tropomodulin actin-binding protein homologue, equalize a diverse array of sibling neuron fates ('B/B'). Loss of Notch signaling gives the same phenotype, whereas loss of numb gives the opposite phenotype ('A/A'). The identical effect of removing either sanpodo or Notch function on the fates of sibling CNS neurons indicates that sanpodo may act in the Notch signaling pathway. In addition, sanpodo and numb show dosage-sensitive interactions and epistasis experiments indicate that sanpodo acts downstream of numb. Taken together, these results show that interactions between sanpodo, the Notch signaling pathway and numb enable CNS sibling neurons to acquire different fates.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Drosophila , Drosophila/embriologia , Proteínas de Membrana/fisiologia , Neurônios/citologia , Animais , Proteínas de Transporte/genética , Linhagem da Célula , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Drosophila/genética , Epistasia Genética , Genes de Insetos/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Hormônios Juvenis/genética , Hormônios Juvenis/fisiologia , Proteínas de Membrana/genética , Proteínas dos Microfilamentos , Mutagênese , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fenótipo , Receptores Notch , Transdução de Sinais/fisiologia
17.
Nature ; 391(6669): 792-5, 1998 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-9486649

RESUMO

The generation of cellular diversity is essential in embryogenesis, especially in the central nervous system. During neurogenesis, cell interactions or asymmetric protein localization during mitosis can generate daughter cells with different fates. Here we describe the asymmetric localization of a messenger RNA and an RNA-binding protein that creates molecular and developmental differences between Drosophila neural precursors (neuroblasts) and their daughter cells, ganglion mother cells (GMCs). The prospero (pros) mRNA and the RNA-binding protein Staufen (Stau) are asymmetrically localized in mitotic neuroblasts and are specifically partitioned into the GMC, as is Pros protein. Stau is required for localization of pros RNA but not of Pros protein. Loss of localization of Stau or of pros RNA alters GMC development, but only in embryos with reduced levels of Pros protein, suggesting that pros RNA and Pros protein act redundantly to specify GMC fate. We also find that GMCs do not transcribe the pros gene, showing that inheritance of pros RNA and/or Pros protein from the neuroblast is essential for GMC specification.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Drosophila , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Proteínas Nucleares/fisiologia , RNA Mensageiro/fisiologia , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição , Animais , Ciclo Celular/fisiologia , Sistema Nervoso Central , Drosophila/embriologia , Drosophila/fisiologia , Microtúbulos/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética
18.
Dev Biol ; 204(2): 478-87, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9882484

RESUMO

Drosophila neuroblasts are a model system for studying asymmetric cell division. Neuroblasts bud off a series of smaller progeny, called ganglion mother cells (GMCs). An essential regulator of GMC development is the Prospero homeodomain transcription factor: Prospero is asymmetrically localized to the basal cortex of the mitotic neuroblast and partitioned into the newborn GMC. Prospero is translocated into the GMC nucleus, where it is necessary to establish GMC-specific gene expression. Cortical localization of Prospero protein is observed only during mitosis; cortical localization requires entry into mitosis and cortical delocalization requires exit from mitosis. The tight correlation and functional requirement between mitosis and cortical Prospero localization suggests that mitosis-specific posttranslational modifications may be involved in regulating Prospero subcellular localization. Here we use monoclonals recognizing the N-terminal or C-terminal region of Prospero to explore its posttranslational regulation. One- and two-dimensional Western analysis reveal a complex pattern of Prospero isoforms; phosphatase assays show that there are several phosphoisoforms of Prospero. Developmental 2D Western blots, cell fractionation assays, and analysis of a missense prospero mutation show that cortical Prospero protein is highly phosphorylated compared to nuclear Prospero protein. Our results are consistent with two functions of Prospero phosphorylation: (i) phosphorylation may be required for Prospero cortical localization; or (ii) phosphorylation may be a consequence of Prospero cortical localization, in which case it may facilitate subsequent events, such as Prospero cortical release or nuclear localization.


Assuntos
Proteínas de Drosophila , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Proteínas Nucleares/fisiologia , Animais , Divisão Celular/fisiologia , Núcleo Celular/fisiologia , Drosophila , Proteínas de Homeodomínio/fisiologia , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Neurônios/fisiologia , Fosforilação , Fatores de Transcrição/fisiologia
19.
Mol Cell Neurosci ; 12(6): 325-39, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9888987

RESUMO

An important question in cellular and developmental biology is how a cell divides to produce daughter cells with different fates. Drosophila neuroblasts are a model system for studying asymmetric cell division: at each division, neuroblasts retain stem cell-like features, whereas their sibling ganglion mother cell (GMC) has a more restricted fate. Establishing neuroblast/GMC differences involves the asymmetric localization of proteins (Inscuteable, Miranda, Prospero, and Staufen) and RNA (prospero). All of these factors are apically localized during interphase, and all except Inscuteable move to the basal cortex at mitosis prior to being partitioned solely into the GMC. In this study, we show that Miranda is colocalized with Staufen and Prospero in neuroblasts, and is required for the asymmetric cortical localization of both proteins. Analysis of miranda mutants reveals three functional domains within the Miranda protein: (1) an N-terminal domain (1-290 aa) sufficient for association of Miranda with the cell cortex and basal localization in mitotic neuroblasts; (2) a central domain (446-727 aa) necessary for apical localization in interphase neuroblasts as well as for "cargo binding" of Prospero, Staufen, and prospero mRNA; and (3) a C-terminal domain (727-830 aa) necessary for the timely degradation of Miranda and release of its cargo from the cortex of the newborn GMC. In addition, Miranda is asymmetrically localized in epithelial cells that lack Inscuteable and divide symmetrically; thus the mechanism regulating Miranda localization is common to epithelial cells and neuroblasts, and Inscuteable is not an obligate component. Finally, we define a C-terminal domain of Staufen sufficient for Miranda-dependent cortical localization in neuroblasts.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Drosophila , Neurônios/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Química Encefálica , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila , Células Epiteliais/química , Células Epiteliais/citologia , Gânglios dos Invertebrados/química , Gânglios dos Invertebrados/citologia , Expressão Gênica/fisiologia , Proteínas de Insetos/análise , Proteínas de Insetos/química , Interfase/fisiologia , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/química , Células-Tronco/citologia , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Nature ; 390(6660): 625-9, 1997 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-9403694

RESUMO

Asymmetric cell division is a general process used in many developmental contexts to create two differently fated cells from a single progenitor cell. Intrinsic mechanisms like the asymmetric transmission of cell-fate determinants during cell division, and extrinsic cell-interaction mechanisms, can mediate asymmetric divisions. During embryonic development of the Drosophila central nervous system, neural stem cells called neuroblasts divide asymmetrically to produce another multipotent neuroblast and a ganglion mother cell (GMC) of more restricted developmental potential. Intrinsic mechanisms promote asymmetric division of neuroblasts: for example, the transcription factor Prospero localizes to the basal cell cortex of mitotic neuroblasts and then segregates exclusively into the GMC, which buds off from the basal side of the neuroblast. In the GMC, Prospero translocates to the nucleus, where it establishes differential gene expression between sibling cells. Here we report the identification of a gene, miranda, which encodes a new protein that co-localizes with Prospero in mitotic neuroblasts, tethers Prospero to the basal cortex of mitotic neuroblasts, directing Prospero into the GMC, and releases Prospero from the cell cortex within GMCs. miranda thus creates intrinsic differences between sibling cells by mediating the asymmetric segregation of a transcription factor into only one daughter cell during neural stem-cell division.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Proteínas de Drosophila , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Clonagem Molecular , Drosophila/citologia , Drosophila/embriologia , Drosophila/genética , Feminino , Gânglios dos Invertebrados/citologia , Genes de Insetos , Masculino , Dados de Sequência Molecular , Mutagênese , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...