Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819456

RESUMO

Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.


Assuntos
Proteínas de Drosophila , Proteínas de Homeodomínio , Sistema Nervoso , Fatores de Transcrição , Animais , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Sistema Nervoso/metabolismo , Sistema Nervoso/embriologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
2.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230563

RESUMO

An unanswered question in neurobiology is how are diverse neuron cell types generated from a small number of neural stem cells? In the Drosophila larval central brain, there are eight bilateral Type 2 neuroblast (T2NB) lineages that express a suite of early temporal factors followed by a different set of late temporal factors and generate the majority of the central complex (CX) neurons. The early-to-late switch is triggered by the orphan nuclear hormone receptor Seven-up (Svp), yet little is known about how this Svp-dependent switch is involved in specifying CX neuron identities. Here, we: (1) birth date the CX neurons P-EN and P-FN (early and late, respectively); (2) show that Svp is transiently expressed in all early T2NBs; and (3) show that loss of Svp expands the population of early born P-EN neurons at the expense of late born P-FN neurons. Furthermore, in the absence of Svp, T2NBs fail decommissioning and abnormally extend their lineage into week-old adults. We conclude that Svp is required to specify CX neuron identity, as well as to initiate T2NB decommissioning.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Drosophila/metabolismo , Linhagem da Célula/fisiologia , Drosophila melanogaster/metabolismo
3.
Elife ; 122024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193901

RESUMO

Notch signaling is an evolutionarily conserved pathway for specifying binary neuronal fates, yet how it specifies different fates in different contexts remains elusive. In our accompanying paper, using the Drosophila lamina neuron types (L1-L5) as a model, we show that the primary homeodomain transcription factor (HDTF) Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates. Here we test the hypothesis that Notch signaling enables Bsh to differentially specify L4 and L5 fates. We show asymmetric Notch signaling between newborn L4 and L5 neurons, but they are not siblings; rather, Notch signaling in L4 is due to Delta expression in adjacent L1 neurons. While Notch signaling and Bsh expression are mutually independent, Notch is necessary and sufficient for Bsh to specify L4 fate over L5. The NotchON L4, compared to NotchOFF L5, has a distinct open chromatin landscape which allows Bsh to bind distinct genomic loci, leading to L4-specific identity gene transcription. We propose a novel model in which Notch signaling is integrated with the primary HDTF activity to diversify neuron types by directly or indirectly generating a distinct open chromatin landscape that constrains the pool of genes that a primary HDTF can activate.


Assuntos
Proteínas de Drosophila , Drosophila , Receptores Notch , Fatores de Transcrição , Animais , Cromatina , Proteínas de Drosophila/genética , Genômica , Neurônios , Fatores do Domínio POU , Fatores de Transcrição/genética , Receptores Notch/genética
4.
Elife ; 122024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180023

RESUMO

How our brain generates diverse neuron types that assemble into precise neural circuits remains unclear. Using Drosophila lamina neuron types (L1-L5), we show that the primary homeodomain transcription factor (HDTF) brain-specific homeobox (Bsh) is initiated in progenitors and maintained in L4/L5 neurons to adulthood. Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates while repressing the HDTF Zfh1 to prevent ectopic L1/L3 fates (control: L1-L5; Bsh-knockdown: L1-L3), thereby generating lamina neuronal diversity for normal visual sensitivity. Subsequently, in L4 neurons, Bsh and Ap function in a feed-forward loop to activate the synapse recognition molecule DIP-ß, thereby bridging neuronal fate decision to synaptic connectivity. Expression of a Bsh:Dam, specifically in L4, reveals Bsh binding to the DIP-ß locus and additional candidate L4 functional identity genes. We propose that HDTFs function hierarchically to coordinate neuronal molecular identity, circuit formation, and function. Hierarchical HDTFs may represent a conserved mechanism for linking neuronal diversity to circuit assembly and function.


Assuntos
Proteínas de Drosophila , Proteínas de Homeodomínio , Animais , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Encéfalo , Drosophila , Neurônios , Proteínas de Drosophila/genética , Fatores do Domínio POU
5.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961302

RESUMO

An open question in neurobiology is how diverse neuron cell types are generated from a small number of neural stem cells. In the Drosophila larval central brain, there are eight bilateral Type 2 neuroblast (T2NB) lineages that express a suite of early temporal factors followed by a different set of late temporal factors and generate the majority of the central complex (CX) neurons. The early-to-late switch is triggered by the orphan nuclear hormone receptor Seven-up (Svp), yet little is known about this Svp-dependent switch in specifying CX neuron identities. Here, we (i) birthdate the CX neurons P-EN and P-FN (early and late, respectively); (ii) show that Svp is transiently expressed in all early T2NBs; and (iii) show that loss of Svp expands the population of early born P-EN neurons at the expense of late born P-FN neurons. Furthermore, in the absence of Svp, T2NBs fail decommissioning and abnormally extend their lineage into week-old adults. We conclude that Svp is required to specify CX neuron identity, as well as to initiate T2NB decommissioning.

6.
Neural Dev ; 18(1): 9, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031099

RESUMO

The generation of neuronal diversity remains incompletely understood. In Drosophila, the central brain is populated by neural stem cells derived from progenitors called neuroblasts (NBs). There are two types of NBs, type 1 and 2. T1NBs have a relatively simple lineage, whereas T2NBs expand and diversify the neural population with the generation of intermediate neural progenitors (INPs), contributing many neurons to the adult central complex, a brain region essential for navigation. However, it is not fully understood how neural diversity is created in T2NB and INP lineages. Imp, an RNA-binding protein, is expressed in T2NBs in a high-to-low temporal gradient, while the RNA-binding protein Syncrip forms an opposing gradient. It remains unknown if Imp expression is carried into INPs; whether it forms a gradient similar to NBs; and whether INP expression of Imp is required for generating neuronal identity or morphology. Here, we show that Imp/Syp are both present in INPs, but not always in opposing gradients. We find that newborn INPs adopt their Imp/Syp levels from their parental T2NBs; that Imp and Syp are expressed in stage-specific high-to-low gradients in INPs. In addition, there is a late INP pulse of Imp. We find that neurons born from old INPs (E-PG and PF-R neurons) have altered morphology following both Imp knock-down and Imp overexpression. We conclude that Imp functions in INPs and newborn neurons to determine proper neuronal morphology and central complex neuropil organization.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/fisiologia , Linhagem da Célula/fisiologia , Neurônios , Drosophila , Neurópilo/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Semin Cell Dev Biol ; 142: 4-12, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35659165

RESUMO

The development of the central nervous system (CNS) in flies and mammals requires the production of distinct neurons in different locations and times. Here we review progress on how Drosophila stem cells (neuroblasts; NBs) generate distinct neurons over time. There are two types of NBs: type I and type II NBs (defined below); here we focus on type I NBs; type II NBs are reviewed elsewhere in this issue. Type I NBs generate neural diversity via the cascading expression of specific temporal transcription factors (TTFs). TTFs are sequentially expressed in neuroblasts and required for the identity of neurons born during each TTF expression window. In this way TTFs specify the "temporal identity" or birth-order dependent identity of neurons. Recent studies have shown that TTF expression in neuroblasts alter the identity of their progeny, including directing motor neurons to form proper connectivity to the proper muscle targets, independent of their birth-order. Similarly, optic lobe (OL) type I NBs express a series of TTFs that promote proper neuron morphology and targeting to the four OL neuropils. Together, these studies demonstrate how temporal identity is crucial in promoting proper circuit assembly within the Drosophila CNS. In addition, TTF orthologs in mouse are good candidates for specifying neuron types in the neocortex and retina. In this review we highlight the recent advances in understanding the role of TTFs in CNS circuit assembly in Drosophila and reflect on the conservation of these mechanisms in mammalian CNS development.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Camundongos , Drosophila/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Neurônios Motores/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/metabolismo
8.
PLoS One ; 17(12): e0272177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520944

RESUMO

Stem cells must balance proliferation and quiescence, with excess proliferation favoring tumor formation, and premature quiescence preventing proper organogenesis. Drosophila brain neuroblasts are a model for investigating neural stem cell entry and exit from quiescence. Neuroblasts begin proliferating during embryogenesis, enter quiescence prior to larval hatching, and resume proliferation 12-30h after larval hatching. Here we focus on the mechanism used to exit quiescence, focusing on "type II" neuroblasts. There are 16 type II neuroblasts in the brain, and they undergo the same cycle of embryonic proliferation, quiescence, and proliferation as do most other brain neuroblasts. We focus on type II neuroblasts due to their similar lineage as outer radial glia in primates (both have extended lineages with intermediate neural progenitors), and because of the availability of specific markers for type II neuroblasts and their progeny. Here we characterize the role of Insulin-like growth factor II mRNA-binding protein (Imp) in type II neuroblast proliferation and quiescence. Imp has previously been shown to promote proliferation in type II neuroblasts, in part by acting antagonistically to another RNA-binding protein called Syncrip (Syp). Here we show that reducing Imp levels delays exit from quiescence in type II neuroblasts, acting independently of Syp, with Syp levels remaining low in both quiescent and newly proliferating type II neuroblasts. We conclude that Imp promotes exit from quiescence, a function closely related to its known role in promoting neuroblast proliferation.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Neurogênese , Encéfalo/metabolismo , Drosophila melanogaster/genética , Proteínas de Ligação a RNA/metabolismo
9.
Elife ; 112022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448675

RESUMO

The organization of neural circuits determines nervous system function. Variability can arise during neural circuit development (e.g. neurite morphology, axon/dendrite position). To ensure robust nervous system function, mechanisms must exist to accommodate variation in neurite positioning during circuit formation. Previously, we developed a model system in the Drosophila ventral nerve cord to conditionally induce positional variability of a proprioceptive sensory axon terminal, and used this model to show that when we altered the presynaptic position of the sensory neuron, its major postsynaptic interneuron partner modified its dendritic arbor to match the presynaptic contact, resulting in functional synaptic input (Sales et al., 2019). Here, we investigate the cellular mechanisms by which the interneuron dendrites detect and match variation in presynaptic partner location and input strength. We manipulate the presynaptic sensory neuron by (a) ablation; (b) silencing or activation; or (c) altering its location in the neuropil. From these experiments we conclude that there are two opposing mechanisms used to establish functional connectivity in the face of presynaptic variability: presynaptic contact stimulates dendrite outgrowth locally, whereas presynaptic activity inhibits postsynaptic dendrite outgrowth globally. These mechanisms are only active during an early larval critical period for structural plasticity. Collectively, our data provide new insights into dendrite development, identifying mechanisms that allow dendrites to flexibly respond to developmental variability in presynaptic location and input strength.

10.
Neural Dev ; 17(1): 7, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002894

RESUMO

The mechanisms that generate neural diversity during development remains largely unknown. Here, we use scRNA-seq methodology to discover new features of the Drosophila larval CNS across several key developmental timepoints. We identify multiple progenitor subtypes - both stem cell-like neuroblasts and intermediate progenitors - that change gene expression across larval development, and report on new candidate markers for each class of progenitors. We identify a pool of quiescent neuroblasts in newly hatched larvae and show that they are transcriptionally primed to respond to the insulin signaling pathway to exit from quiescence, including relevant pathway components in the adjacent glial signaling cell type. We identify candidate "temporal transcription factors" (TTFs) that are expressed at different times in progenitor lineages. Our work identifies many cell type specific genes that are candidates for functional roles, and generates new insight into the differentiation trajectory of larval neurons.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Linhagem da Célula/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva , Células-Tronco Neurais/fisiologia , Análise de Sequência de RNA
11.
Dev Biol ; 489: 21-33, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660371

RESUMO

Embryonic development results in the production of distinct tissue types, and different cell types within each tissue. A major goal of developmental biology is to uncover the "parts list" of cell types that comprise each organ. Here we perform single cell RNA sequencing (scRNA-seq) of the Drosophila embryo to identify the genes that characterize different cell and tissue types during development. We assay three different timepoints, revealing a coordinated change in gene expression within each tissue. Interestingly, we find that the elav and Mhc genes, whose protein products are widely used as markers for neurons and muscles, respectively, show broad pan-embryonic expression, indicating the importance of post-transcriptional regulation. We next focus on the central nervous system (CNS), where we identify genes whose expression is enriched at each stage of neuronal differentiation: from neural progenitors, called neuroblasts, to their immediate progeny ganglion mother cells (GMCs), followed by new-born neurons, young neurons, and the most mature neurons. Finally, we ask whether the clonal progeny of a single neuroblast (NB7-1) share a similar transcriptional identity. Surprisingly, we find that clonal identity does not lead to transcriptional clustering, showing that neurons within a lineage are diverse, and that neurons with a similar transcriptional profile (e.g. motor neurons, glia) are distributed among multiple neuroblast lineages. Although each lineage consists of diverse progeny, we were able to identify a previously uncharacterized gene, Fer3, as an excellent marker for the NB7-1 lineage. Within the NB7-1 lineage, neurons which share a temporal identity (e.g. Hunchback, Kruppel, Pdm, and Castor temporal transcription factors in the NB7-1 lineage) have shared transcriptional features, allowing for the identification of candidate novel temporal factors or targets of the temporal transcription factors. In conclusion, we have characterized the embryonic transcriptome for all major tissue types and for three stages of development, as well as the first transcriptomic analysis of a single, identified neuroblast lineage, finding a lineage-enriched transcription factor.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Linhagem da Célula/genética , Sistema Nervoso Central/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios Motores , Fatores de Transcrição/metabolismo
12.
Curr Biol ; 32(11): 2430-2441.e3, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512697

RESUMO

Neural circuit function underlies cognition, sensation, and behavior. Proper circuit assembly depends on the identity of the neurons in the circuit (gene expression, morphology, synapse targeting, and biophysical properties). Neuronal identity is established by spatial and temporal patterning mechanisms, but little is known about how these mechanisms drive circuit formation in postmitotic neurons. Temporal patterning involves the sequential expression of transcription factors (TFs) in neural progenitors to diversify neuronal identity, in part through the initial expression of homeodomain TF combinations. Here, we address the role of the Drosophila temporal TF Hunchback and the homeodomain TF Bicoid in the assembly of the Pair1 (SEZ_DN1) descending neuron locomotor circuit, which promotes larval pausing and head casting. We find that both Hunchback and Bicoid are expressed in larval Pair1 neurons, Hunchback activates Bicoid in Pair1 (opposite of their embryonic relationship), and the loss of Hunchback function or Bicoid function from Pair1 leads to ectopic presynapse numbers in Pair1 axons and an increase in Pair1-induced pausing behavior. These phenotypes are highly specific, as the loss of Bicoid or Hunchback has no effect on Pair1 neurotransmitter identity, dendrite morphology, or axonal morphology. Importantly, the loss of Hunchback or Bicoid in Pair1 leads to the addition of new circuit partners that may underlie the exaggerated locomotor pausing behavior. These data are the first to show a role for Bicoid outside of embryonic patterning and the first to demonstrate a cell-autonomous role for Hunchback and Bicoid in interneuron synapse targeting and locomotor behavior.


Assuntos
Proteínas de Drosophila , Animais , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Larva/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo
13.
Curr Biol ; 31(23): 5341-5349.e4, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34478644

RESUMO

Neural activity sculpts circuit wiring in many animals. In vertebrates, patterned spontaneous network activity (PaSNA) generates sensory maps and establishes local circuits.1-3 However, it remains unclear how PaSNA might shape neuronal circuits and behavior in invertebrates. Previous work in the developing Drosophila embryo discovered intrinsic muscle activity that did not require synaptic transmission, and hence was myogenic, preceding PaSNA.4-6 These studies, however, monitored muscle movement, not neural activity, and were therefore unable to observe how myogenic activity might relate to subsequent neural network engagement. Here we use calcium imaging to directly record neural activity and characterize the emergence of PaSNA. We demonstrate that the spatiotemporal properties of PaSNA are highly stereotyped across embryos, arguing for genetic programming. Neural activity begins well before it becomes patterned, emerging during the myogenic stage. Remarkably, inhibition of mechanosensory input, as well as inhibition of muscle contractions, results in premature and excessive PaSNA, demonstrating that muscle movement serves as a brake on this process. Finally, transient mechanosensory inhibition during PaSNA, followed by quantitative modeling of larval behavior, shows that mechanosensory modulation during development is required for proper larval foraging. This work provides a foundation for using the Drosophila embryo to study the role of PaSNA in circuit formation, provides mechanistic insight into how PaSNA is entrained by motor activity, and demonstrates that spontaneous network activity is essential for locomotor behavior. These studies argue that sensory feedback during the earliest stages of circuit formation can sculpt locomotor behaviors through innate motor learning.


Assuntos
Drosophila , Transmissão Sináptica , Animais , Larva/fisiologia , Contração Muscular , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
14.
Elife ; 102021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259633

RESUMO

Individual neurons can undergo drastic structural changes, known as neuronal remodeling or structural plasticity. One example of this is in response to hormones, such as during puberty in mammals or metamorphosis in insects. However, in each of these examples, it remains unclear whether the remodeled neuron resumes prior patterns of connectivity, and if so, whether the persistent circuits drive similar behaviors. Here, we utilize a well-characterized neural circuit in the Drosophila larva: the moonwalker descending neuron (MDN) circuit. We previously showed that larval MDN induces backward crawling, and synapses onto the Pair1 interneuron to inhibit forward crawling (Carreira-Rosario et al., 2018). MDN is remodeled during metamorphosis and regulates backward walking in the adult fly. We investigated whether Pair1 is remodeled during metamorphosis and functions within the MDN circuit during adulthood. We assayed morphology and molecular markers to demonstrate that Pair1 is remodeled during metamorphosis and persists in the adult fly. MDN-Pair1 connectivity is lost during early pupal stages, when both neurons are severely pruned back, but connectivity is re-established at mid-pupal stages and persist into the adult. In the adult, optogenetic activation of Pair1 resulted in arrest of forward locomotion, similar to what is observed in larvae. Thus, the MDN-Pair1 neurons are an interneuronal circuit - a pair of synaptically connected interneurons - that is re-established during metamorphosis, yet generates similar locomotor behavior at both larval and adult stages.


Assuntos
Drosophila/fisiologia , Larva/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Animais , Drosophila melanogaster/fisiologia , Interneurônios , Metamorfose Biológica/fisiologia , Plasticidade Neuronal , Optogenética , Sinapses
15.
Elife ; 102021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973523

RESUMO

The mechanisms specifying neuronal diversity are well characterized, yet it remains unclear how or if these mechanisms regulate neural circuit assembly. To address this, we mapped the developmental origin of 160 interneurons from seven bilateral neural progenitors (neuroblasts) and identify them in a synapse-scale TEM reconstruction of the Drosophila larval central nervous system. We find that lineages concurrently build the sensory and motor neuropils by generating sensory and motor hemilineages in a Notch-dependent manner. Neurons in a hemilineage share common synaptic targeting within the neuropil, which is further refined based on neuronal temporal identity. Connectome analysis shows that hemilineage-temporal cohorts share common connectivity. Finally, we show that proximity alone cannot explain the observed connectivity structure, suggesting hemilineage/temporal identity confers an added layer of specificity. Thus, we demonstrate that the mechanisms specifying neuronal diversity also govern circuit formation and function, and that these principles are broadly applicable throughout the nervous system.


Assuntos
Sistema Nervoso Central/fisiologia , Drosophila melanogaster/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Proteínas de Drosophila/fisiologia
16.
Nature ; 592(7854): 414-420, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828296

RESUMO

Critical periods-brief intervals during which neural circuits can be modified by activity-are necessary for proper neural circuit assembly. Extended critical periods are associated with neurodevelopmental disorders; however, the mechanisms that ensure timely critical period closure remain poorly understood1,2. Here we define a critical period in a developing Drosophila motor circuit and identify astrocytes as essential for proper critical period termination. During the critical period, changes in activity regulate dendrite length, complexity and connectivity of motor neurons. Astrocytes invaded the neuropil just before critical period closure3, and astrocyte ablation prolonged the critical period. Finally, we used a genetic screen to identify astrocyte-motor neuron signalling pathways that close the critical period, including Neuroligin-Neurexin signalling. Reduced signalling destabilized dendritic microtubules, increased dendrite dynamicity and impaired locomotor behaviour, underscoring the importance of critical period closure. Previous work defined astroglia as regulators of plasticity at individual synapses4; we show here that astrocytes also regulate motor circuit critical period closure to ensure proper locomotor behaviour.


Assuntos
Astrócitos/fisiologia , Período Crítico Psicológico , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Vias Eferentes/fisiologia , Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Dendritos/fisiologia , Feminino , Locomoção/fisiologia , Masculino , Microtúbulos/metabolismo , Neurópilo/fisiologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sinapses/fisiologia , Fatores de Tempo
17.
J Neurosci ; 41(6): 1119-1129, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568445

RESUMO

The ability to sense the world, process information, and navigate the environment depends on the assembly and continuous function of neural circuits in the brain. Within the past two decades, new technologies have rapidly advanced our understanding of how neural circuits are wired during development and how they are stably maintained, often for years. Electron microscopy reconstructions of model organism connectomes have provided a map of the stereotyped (and variable) connections in the brain; advanced light microscopy techniques have enabled direct observation of the cellular dynamics that underlie circuit construction and maintenance; transcriptomic and proteomic surveys of both developing and mature neurons have provided insights into the molecular and genetic programs governing circuit establishment and maintenance; and advanced genetic techniques have allowed for high-throughput discovery of wiring regulators. These tools have empowered scientists to rapidly generate and test hypotheses about how circuits establish and maintain connectivity. Thus, the set of principles governing circuit formation and maintenance have been expanded. These principles are discussed in this review.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Conectoma/métodos , Humanos , Proteômica/métodos , Sinapses/fisiologia
18.
Neural Dev ; 16(1): 1, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413602

RESUMO

Neuronal networks are capable of undergoing rapid structural and functional changes called plasticity, which are essential for shaping circuit function during nervous system development. These changes range from short-term modifications on the order of milliseconds, to long-term rearrangement of neural architecture that could last for the lifetime of the organism. Neural plasticity is most prominent during development, yet also plays a critical role during memory formation, behavior, and disease. Therefore, it is essential to define and characterize the mechanisms underlying the onset, duration, and form of plasticity. Astrocytes, the most numerous glial cell type in the human nervous system, are integral elements of synapses and are components of a glial network that can coordinate neural activity at a circuit-wide level. Moreover, their arrival to the CNS during late embryogenesis correlates to the onset of sensory-evoked activity, making them an interesting target for circuit plasticity studies. Technological advancements in the last decade have uncovered astrocytes as prominent regulators of circuit assembly and function. Here, we provide a brief historical perspective on our understanding of astrocytes in the nervous system, and review the latest advances on the role of astroglia in regulating circuit plasticity and function during nervous system development and homeostasis.


Assuntos
Astrócitos , Plasticidade Neuronal , Animais , Humanos , Neurogênese , Neurônios , Sinapses
19.
Neuron ; 109(1): 105-122.e7, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33120017

RESUMO

The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.


Assuntos
Conectoma/métodos , Interneurônios/metabolismo , Rede Nervosa/metabolismo , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Interneurônios/química , Rede Nervosa/química , Optogenética/métodos , Sinapses/química , Sinapses/genética
20.
Neural Dev ; 15(1): 13, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33160402

RESUMO

BACKGROUND: Developing cortical neurons express a tightly choreographed sequence of cytoskeletal and transmembrane proteins to form and strengthen specific synaptic connections during circuit formation. Nectin-3 is a cell-adhesion molecule with previously described roles in synapse formation and maintenance. This protein and its binding partner, nectin-1, are selectively expressed in upper-layer neurons of mouse visual cortex, but their role in the development of cortical circuits is unknown. METHODS: Here we block nectin-3 expression (via shRNA) or overexpress nectin-3 in developing layer 2/3 visual cortical neurons using in utero electroporation. We then assay dendritic spine densities at three developmental time points: eye opening (postnatal day (P)14), one week following eye opening after a period of heightened synaptogenesis (P21), and at the close of the critical period for ocular dominance plasticity (P35). RESULTS: Knockdown of nectin-3 beginning at E15.5 or ~ P19 increased dendritic spine densities at P21 or P35, respectively. Conversely, overexpressing full length nectin-3 at E15.5 decreased dendritic spine densities when all ages were considered together. The effects of nectin-3 knockdown and overexpression on dendritic spine densities were most significant on proximal secondary apical dendrites. Interestingly, an even greater decrease in dendritic spine densities, particularly on basal dendrites at P21, was observed when we overexpressed nectin-3 lacking its afadin binding domain. CONCLUSION: These data collectively suggest that the proper levels and functioning of nectin-3 facilitate normal synapse formation after eye opening on apical and basal dendrites in layer 2/3 of visual cortex.


Assuntos
Espinhas Dendríticas/fisiologia , Nectinas/metabolismo , Sinapses/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...