Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(6): 065101, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625041

RESUMO

The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses. This leads to reacting plasmas that reach peak fusion production at later times with increased size, temperature, mass and with lower emission weighted areal densities. Analytic models are consistent with the observations and inferences for how these quantities evolve as the rate of fusion self-heating, fusion yield, and target gain increase. At peak fusion production, it is found that as temperatures and target gains rise, the expansion power loss increases to a near constant ratio of the fusion self-heating power. This is consistent with models that indicate that the expansion losses dominate the dynamics in this regime.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3887-3892, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37261475

RESUMO

Cerebral sinus venous thrombosis (CSVT) is an uncommon disease that is usually treated with anticoagulation (heparin, low-molecular heparin, or vitamin K-antagonists). We compared treatment with edoxaban, an oral factor Xa-antagonist, that has not been approved in patients with CSVT, with enoxaparin, a well-established therapy, in a rat model of CSVT. Fifty male Wistar rats were randomized into 5 groups (10 animals each) and subjected to aluminum chloride (AlCl3)-induced thrombosis of the superior sagittal sinus (SSS) or sham procedure. Animals with thrombosis of the SSS were treated with edoxaban, enoxaparin, or placebo. Diagnostic workup included neurological examination, MRI imaging, MR-flow measurements of the SSS, and immunohistochemical staining. Neurological examination revealed no differences between treatment groups. Seven days after initial thrombosis, flow in the SSS was lower in the active treatment group as compared to sham-operated animals (p < 0.05). Flow in the SSS in the active treatment groups (edoxaban 1 h prior to thrombosis: 0.16 cm/s ± 0.06 cm/s; edoxaban 6 h after thrombosis: 0.13 cm/s ± 0.05 cm/s; enoxaparin: 0.13 cm/s ± 0.04 cm/s; placebo: 0.07 cm/s ± 0.02 cm/s) was higher as compared to placebo (p < 0.05), but there were no differences between the active treatment groups (p > 0.05). Immunohistochemical staining showed no differences in the actively treated animals. Edoxaban proved to be similar to enoxaparin in a model of experimental AlCl3-induced CSVT.


Assuntos
Enoxaparina , Trombose , Humanos , Masculino , Ratos , Animais , Enoxaparina/farmacologia , Enoxaparina/uso terapêutico , Seio Sagital Superior , Ratos Wistar , Inibidores do Fator Xa/farmacologia , Inibidores do Fator Xa/uso terapêutico , Heparina/farmacologia , Trombose/induzido quimicamente , Trombose/tratamento farmacológico
3.
Cell Death Dis ; 6: e2024, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26673668

RESUMO

Although cellular prion protein (PrP(c)) has been suggested to have physiological roles in neurogenesis and angiogenesis, the pathophysiological relevance of both processes remain unknown. To elucidate the role of PrP(c) in post-ischemic brain remodeling, we herein exposed PrP(c) wild type (WT), PrP(c) knockout (PrP-/-) and PrP(c) overexpressing (PrP+/+) mice to focal cerebral ischemia followed by up to 28 days reperfusion. Improved neurological recovery and sustained neuroprotection lasting over the observation period of 4 weeks were observed in ischemic PrP+/+ mice compared with WT mice. This observation was associated with increased neurogenesis and angiogenesis, whereas increased neurological deficits and brain injury were noted in ischemic PrP-/- mice. Proteasome activity and oxidative stress were increased in ischemic brain tissue of PrP-/- mice. Pharmacological proteasome inhibition reversed the exacerbation of brain injury induced by PrP-/-, indicating that proteasome inhibition mediates the neuroprotective effects of PrP(c). Notably, reduced proteasome activity and oxidative stress in ischemic brain tissue of PrP+/+ mice were associated with an increased abundance of hypoxia-inducible factor 1α and PACAP-38, which are known stimulants of neural progenitor cell (NPC) migration and trafficking. To elucidate effects of PrP(c) on intracerebral NPC homing, we intravenously infused GFP(+) NPCs in ischemic WT, PrP-/- and PrP+/+ mice, showing that brain accumulation of GFP(+) NPCs was greatly reduced in PrP-/- mice, but increased in PrP+/+ animals. Our results suggest that PrP(c) induces post-ischemic long-term neuroprotection, neurogenesis and angiogenesis in the ischemic brain by inhibiting proteasome activity.


Assuntos
Isquemia Encefálica/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Príons/metabolismo , Animais , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/patologia , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia
4.
Cell Death Dis ; 5: e1386, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25144721

RESUMO

Intravenous transplantation of neural progenitor cells (NPCs) induces functional recovery after stroke, albeit grafted cells are not integrated into residing neural networks. However, a systematic analysis of intravenous NPC delivery at acute and post-acute time points and their long-term consequences does not exist. Male C57BL6 mice were exposed to cerebral ischemia, and NPCs were intravenously grafted on day 0, on day 1 or on day 28. Animals were allowed to survive for up to 84 days. Mice and tissues were used for immunohistochemical analysis, flow cytometry, ELISA and behavioral tests. Density of grafted NPCs within the ischemic hemisphere was increased when cells were transplanted on day 28 as compared with transplantation on days 0 or 1. Likewise, transplantation on day 28 yielded enhanced neuronal differentiation rates of grafted cells. Post-ischemic brain injury, however, was only reduced when NPCs were grafted at acute time points. On the contrary, reduced post-ischemic functional deficits due to NPC delivery were independent of transplantation paradigms. NPC-induced neuroprotection after acute cell delivery was due to stabilization of the blood-brain barrier (BBB), reduction in microglial activation and modulation of both peripheral and central immune responses. On the other hand, post-acute NPC transplantation stimulated post-ischemic regeneration via enhanced angioneurogenesis and increased axonal plasticity. Acute NPC delivery yields long-term neuroprotection via enhanced BBB integrity and modulation of post-ischemic immune responses, whereas post-acute NPC delivery increases post-ischemic angioneurogenesis and axonal plasticity. Post-ischemic functional recovery, however, is independent of NPC delivery timing, which offers a broad therapeutic time window for stroke treatment.


Assuntos
Encéfalo/fisiologia , Células-Tronco Neurais/transplante , Acidente Vascular Cerebral/terapia , Animais , Barreira Hematoencefálica/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Células-Tronco Neurais/citologia , Neurogênese , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/mortalidade , Acidente Vascular Cerebral/patologia , Transplante Homólogo
6.
Rev Sci Instrum ; 83(10): 10D308, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126835

RESUMO

DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.4 ± 0.6) × dsr(10-12 MeV). The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel ρR) and Y(n), has improved almost two orders of magnitude since the first shot in September, 2010.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...