Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 270: 128650, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33131730

RESUMO

In the present study, a facile method was used to synthesize the ruthenium and ruthenium oxide (RuO2) nanoparticles (NPs) derived from three different metallosurfactants. Firstly, three metallosurfactants were fabricated i.e. RuCTAC (Bishexadecyltrimethylammonium ruthenium tetrachloride), RuDDA (Bisdodecylamine ruthenium dichloride), and RuHEXA (Bishexadecylamine ruthenium dichloride) and characterized by CHN, FTIR, and 1HNMR. These metallosurfactants were further utilized to fabricate the mixed type of NPs (Ru and RuO2 NPs) using the biocompatible microemulsion technique and NPs were then characterized. Subsequently, the nanotoxicity of mixed NPs (Ru & RuO2) was studied towards Saccharomyces cerevisiae. The detailed study of nanotoxicity against the S. cerevisiae cells was done by employing optical microscopy, FESEM, anti-yeast activity assay, circular dichroism, and gel electrophoresis techniques. FESEM and optical microscopy analyses indicated that RuCTAC nanosuspension (Ns) has the most toxic effect on the S. cerevisiae cells. FESEM analysis confirmed the harmful impact of Ru and RuO2 NPs on the S. cerevisiae cells. From the FESEM analysis, complete alteration in the morphology, cell membrane breakage, and formation of the holes on the cell wall of S. cerevisiae was affirmed in presence of all three types of Ns i.e. RuCTAC, RuDDA, and RuHEXA Ns. Genotoxicity of the NPs was confirmed by circular dichroism and gel electrophoresis and it was found that RuCTAC and RuHEXA Ns have the most damaging influence on the yeast genomic DNA.


Assuntos
Nanopartículas , Rutênio , Dano ao DNA , Óxidos , Rutênio/toxicidade , Saccharomyces cerevisiae/genética
2.
Colloids Surf B Biointerfaces ; 187: 110752, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31911039

RESUMO

In today's world, nanotechnology is reaching practically every ground and entering the human lifestyle by becoming a part of it. Thus, it is vital to check the cytotoxic and genotoxic effects of nanosubstances on plants, as they are the base constituent of ecosystem. The present work deals with the toxicity evaluation of metallosurfactant derived palladium oxide nanoparticles towards Allium sativum (Garlic cloves). The nanoparticles were prepared using microemulsion quenching method (a softer approach) using palladium metallosurfactants as precursors. The three ligands used were cetyltrimethylammonium chloride (CTAC), dodecylamine (DDA) and hexadecylamine (HEXA). Further, their characterization was done using TEM, Size Distribution curve, FESEM, EDS, XRD and Zeta potential. Garlic (Allium sativum) cloves were used to investigate the cytotoxicity and genotoxicity of fabricated PdO NPs. To check the cytotoxicity, optical microscopy was employed and for the genotoxic assessment, different parameters such as chromosomal aberrations in the mitosis, circular dichroism, and gel electrophoresis were utilized. From mitosis study, chromosomes aberrations were confirmed such as chromosomes stickiness, breakage, C-Mitosis, delay in anaphase, spindle fibre abnormality, laggard, vagrant and condensed chromosomes. Morphology of A. sativum clove, rooting and shooting pattern in the presence of PdO nanosuspension was observed. From all the experiments, it was concluded that all the three PdO nanosuspension are toxic in nature to both the cells and to genome, although, bishexadecyltrimethyl ammonium palladium tetrachloride (PdCTAC) Ns was found to be the most cytotoxic and genotoxic. Gel electrophoresis also confirmed the complete degradation of DNA in the presence of PdCTAC Ns.


Assuntos
Aberrações Cromossômicas , Dano ao DNA/efeitos dos fármacos , Alho/efeitos dos fármacos , Nanopartículas/toxicidade , Paládio/toxicidade , Aminas/química , Cetrimônio/química , Dicroísmo Circular , Hidrocarbonetos/química , Ligantes , Microscopia Eletrônica de Transmissão , Mitose/efeitos dos fármacos , Testes de Mutagenicidade , Nanopartículas/química , Paládio/química , Tamanho da Partícula , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos
3.
Sci Total Environ ; 681: 350-364, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31117016

RESUMO

This work deals with the fabrication of metallosurfactants derived cobalt oxide and hydroxide nanosuspensions (Ns) by microemulsion method and their antimicrobial, cytotoxic, genotoxic, antioxidant and cytostatic activity have been investigated. The methodology used is environmentally compliant as no external reducing agent was used. Three metallosurfactants i.e. CoCTAC (Bishexadecyltrimethylammonium cobalt tetrachloride), CoDDA (Bisdodecylamine cobalt dichloride) and CoHEXA (bishexadecylamine cobalt dichloride) were used. Co-metallosurfactants were synthesized, characterized and were utilized for the preparation of mixed microemulsion to yield nanosuspensions. Nanoparticles prepared were characterized using Transmission electron microscopy (TEM), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), UV-vis spectroscopy and Zeta potential. The nanoparticles were found to be spherical, with size range 1-5 nm, for all the three precursors. Further, their cytotoxicity, genotoxicity, and antimicrobial activity were investigated against Staphylococcus aureus (S. aureus). To evaluate these activities, techniques such as gram staining method, agar well diffusion, and colony forming unit count (CFU) were utilized. From all these experiments it was confirmed that CoCTAC Ns has maximum antimicrobial activity against multiple medicine resistant S. aureus. Circular dichroism and gel electrophoresis also validated the vigorous genotoxic effect of CoCTAC Ns. The antimicrobial activity trend investigated from CFU experiment was CoCTAC Ns (2 × 105 CFU/mL) > CoDDA Ns (17 × 105 CFU/mL) > CoHEXA Ns (46.5 × 105 CFU/mL). FESEM authenticated the effect of Co Ns on the morphology of S. aureus. Cell shrinkage, formation of holes, change of morphology, and cell wall rupturing was observed for all three cases but most significant antibacterial activity was noted for the case of CoCTAC Ns. In addition, antiproliferative activity was also examined against HepG2 cells (human liver cancer cell line) and HEK293 cells (human embryonic kidney cell line). After 70% confluency of cells, cobalt oxide/hydroxide Ns were added by diluting the nanosuspension in 0.2, 0.4, 0.5, and 0.8% V/V ratio to check the cell viability.


Assuntos
Antibacterianos/toxicidade , Nanopartículas Metálicas/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/toxicidade , Cobalto/toxicidade , Óxidos/toxicidade
4.
J Biomol Struct Dyn ; 37(4): 892-909, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29448887

RESUMO

The present work aims at the fabrication of iron oxide nanocolloids using biocompatible microemulsion and their cytotoxic, genotoxic effect on Vitis vinifera plant has been evaluated. The three iron-based metallosurfactant complexes were synthesized. Nanosuspensions (Ns) were prepared using microemulsion technique and for the purpose, the microemulsion was prepared using oleic acid, butanol, tween 80 and as synthesized iron metallosurfactant. In this technique, no additional capping agent and/or reducing agent was added. Tween 80 which is a biocompatible surfactant acted as a reducing agent as well as stabilizing for the iron oxide Ns. Characterization of Ns's was done using TEM, FESEM, EDX, XRD, AFM, and zeta potential. Mixed type of iron oxide nanoparticles i.e. magnetite (Fe3O4), and maghemite (Fe2O3) with a size range of 1-16 nm was found to be present in the nanosuspensions prepared from all the three precursors. The antioxidant activity of the Fe Ns was also confirmed using DPPH assay, with order of activity FeDDA > FeCTAC > FeHEXA. The cellular toxicity of Ns was evaluated by observing the morphological changes on V. vinifera plant (petiole) using a light microscope. Further, the interactions of iron oxide Ns with V. vinifera's DNA (plant-DNA) was assessed using circular dichroism (CD) and gel electrophoresis. For the case of FeCTAC Ns, a decrease in the intensity of bands was observed indicating fragmentation or adduct formation resulting in DNA damage. In the case of FeDDA, a modest decrease in the intensity of bands was observed. However, for FeHEXA Ns, complete neutralization of bands was confirmed implying maximum damage to the plant DNA. CD, gel electrophoresis and antioxidant activity confirmed that FeHEXA Ns were most toxic and FeDDA Ns were safest among the three as-fabricated nanosuspensions.


Assuntos
Antioxidantes/administração & dosagem , Coloides/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Compostos Férricos/química , Nanopartículas/administração & dosagem , Tensoativos/administração & dosagem , Vitis/efeitos dos fármacos , Antioxidantes/química , Coloides/química , DNA de Plantas/análise , DNA de Plantas/efeitos dos fármacos , Nanopartículas/química , Tensoativos/química , Vitis/genética , Vitis/crescimento & desenvolvimento
5.
Colloids Surf B Biointerfaces ; 170: 99-108, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29894838

RESUMO

In the present study, we have synthesized nickel hydroxide nanosuspensions (Ns) using microemulsion technique. This approach is eco-friendly and makes use of Tween 80 (a non-ionic biocompatible surfactant) and newly synthesized metallosurfactants for the formation of uniform nanoparticles in the form of nanosuspensions (Ns). The nickel hydroxide Ns's were derived from three different metallosurfactants i.e. NiCTAC (Bishexadecyltrimethylammonium nickel tetrachloride), NiDDA (Bisdodecylamine nickel dichloride) and NiHEXA (bishexadecylamine nickel dichloride). Three different nickel-based metallosurfactants were synthesized and characterized using various methods such as CHN, 1HNMR, and FTIR. Fabrication of nanosuspension was confirmed using different characterization methods such as Transmission electron microscopy (TEM), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), pH and Zeta potential. These particles were further investigated for their genotoxic and cytotoxic effects on gram-negative bacteria, Escherichia coli (E. coli). Effect of nanosuspensions on E. coli was confirmed using colony forming unit count, agar well diffusion, and gram staining method. Through colony forming unit count method, nanosuspensions influence on the colony-forming capacity of E. coli cells was confirmed. Agar well diffusion method provides the estimation of antimicrobial activity, and the largest inhibition zone was observed for NiCTAC Ns and smallest for NiHEXA Ns which is related to maximum and minimum bactericidal properties of Ns, respectively. The interaction behavior of bacterial DNA with Ni nanosuspension was analyzed using agarose gel electrophoresis and circular dichroism. Along with, the role of different chemical scavengers was also evaluated in DNA damage using gel electrophoresis. Furthermore, the antioxidant activity of Ni nanosuspension was also confirmed using DPPH assay.


Assuntos
Antibacterianos/farmacologia , DNA Bacteriano/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nanopartículas/química , Compostos Organometálicos/farmacologia , Tensoativos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Dano ao DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Hidróxidos/química , Hidróxidos/farmacologia , Testes de Sensibilidade Microbiana , Níquel/química , Níquel/farmacologia , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/síntese química , Tensoativos/química
6.
Int J Pharm ; 535(1-2): 95-105, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29102701

RESUMO

In the present study, we have synthesized mixed cuprous/copper oxide nanosuspensions by metallosurfactant based microemulsion technique. Three metallosurfactants were synthesized which includes two non-ionic double chained metallosurfactants with C12, C16 chains with coordinated copper i.e. Cudda and Cuhexa, respectively. Another cationic double chained metallosurfactant with loosely bound metal (Cuctac) was also prepared. The prepared metallocomplexes were characterized using FTIR, elemental analysis, and NMR. The effect of the position of metallosurfactant in microemulsion on the fabrication and properties of nanosuspensions was elucidated. In this method, no external reducing agent and capping agent were added and tween 80 acted both as reducing and stabilizing agent for the nanoparticles. The synthesized nanoparticles were characterized and it was observed that mixed copper and cuprous oxide particles are present in colloidal suspension for all the three studied metallosurfactants. The kinetics of formation of mixed copper/cuprous oxide nanosuspensions (Ns) and their stability was estimated using Uv-visible spectroscopy. Further, the binding and interactions of copper nanosuspensions with calf Thymus DNA (CT-DNA) were assessed using Uv-vis spectroscopy, circular dichroism and gel electrophoresis. Additionally, the antioxidant activity of the Cu Ns was checked using DPPH assay. The role of positive charge on nanoparticles as evaluated from Zeta potential was responsible for DNA affinity. The DNA conformational changes in the presence of nanosuspensions and relevant scavengers were investigated. Further, the anti-proliferative activity of copper Ns was assessed using HeLa cells and Cuhexa derived Ns were proved to be active with highest activity at a low concentration and were nontoxic towards normal cell lines. In summary, this work demonstrates a softer approach for the synthesis of copper nanosuspensions with a size range of 2-5 nm and evaluated the role of type and structure of metallosurfactant on size, stability of particles and anti-proliferative activity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cobre/química , DNA/química , Nanopartículas/química , Tensoativos/química , Tecnologia Farmacêutica/métodos , Células 3T3-L1 , Animais , Coloides , Cobre/farmacologia , Emulsões , Células HeLa , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...