Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Vis Exp ; (143)2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30663641

RESUMO

We describe methods for producing and analyzing large, thin flakes of air-sensitive two-dimensional materials. Thin flakes of layered or van der Waals crystals are produced using mechanical exfoliation, in which layers are peeled off a bulk crystal using adhesive tape. This method produces high-quality flakes, but they are often small and can be hard to find, particularly for materials with relatively high cleavage energies such as black phosphorus. By heating the substrate and the tape, two-dimensional material adhesion to the substrate is promoted, and the flake yield can be increased by up to a factor of ten. After exfoliation, it is necessary to image or otherwise analyze these flakes but some two-dimensional materials are sensitive to oxygen or water and will degrade when exposed air. We have designed and tested a hermetic transfer cell to temporarily maintain the inert environment of a glovebox so that air-sensitive flakes can be imaged and analyzed with minimal degradation. The compact design of the transfer cell is such that optical analysis of sensitive materials can be performed outside of a glovebox without specialized equipment or modifications to existing equipment.


Assuntos
Ar , Fósforo/química , Oxigênio , Água
2.
RSC Adv ; 9(50): 29173-29181, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35528416

RESUMO

Plasmon coupling and hybridization in 2D materials plays a significant role for controlling light-matter interaction at the nanoscale. We present a near-field radiation heat transfer (NFRHT) between vertically separated graphene and black phosphorene sheets at different temperatures in nanoscale separations. Radiation exchange from the theory of fluctuation electrodynamics is modulated by the carrier density of graphene and phosphorene. Direct comparison of NFRHT black phosphorene-graphene to symmetric graphene-graphene radiation exchange can be as much as 4 times higher for the selected doping range in both armchair (AC) and zigzag (ZZ) orientations of BP. The strong NFRHT enhancement of the specific optical properties of the heterogenous 2D material is due to the strong coupling of propagating surface plasmon polaritons as demonstrated by the distribution of the heat transfer coefficient. We also demonstrate that the magnitude of the near-field radiation enhancement is found to acutely depend on the vacuum gap of the graphene and BP pair. Interestingly, for separation distances below 200 nm, the total near-field heat transfer between black phosphorene and graphene exceeds that between graphene and graphene by 5 times. The radiation enhancement can be further tuned based on the orientation, AC, and ZZ of black phosphorene. These results prominently enable dynamic control of the total NFRHT relying on tunable anisotropic characteristics of BP irrespective of graphene's optical conductivity. Furthermore, the heterogeneous pairs of 2D materials potentially provide alternative platforms to achieve beyond super-Planckian radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...