Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(13): 130605, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613309

RESUMO

The Gottesman-Kitaev-Preskill (GKP) code may be used to overcome noise in continuous variable quantum systems. However, preparing GKP states remains experimentally challenging. We propose a method for preparing GKP states by engineering a time-periodic Hamiltonian whose Floquet states are GKP states. This Hamiltonian may be realized in a superconducting circuit comprising a SQUID shunted by a superinductor and a capacitor, with a characteristic impedance twice the resistance quantum. The GKP Floquet states can be prepared by adiabatically tuning the frequency of the external magnetic flux drive. We predict that highly squeezed >11.9 dB (10.8 dB) GKP magic states can be prepared on a microsecond timescale, given a quality factor of 10^{6} (10^{5}) and flux noise at typical rates.

2.
Nat Commun ; 10(1): 1196, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867427

RESUMO

Scalable quantum processors require tunable two-qubit gates that are fast, coherent and long-range. The Heisenberg exchange interaction offers fast and coherent couplings for spin qubits, but is intrinsically short-ranged. Here, we demonstrate that its range can be increased by employing a multielectron quantum dot as a mediator, while preserving speed and coherence of the resulting spin-spin coupling. We do this by placing a large quantum dot with 50-100 electrons between a pair of two-electron double quantum dots that can be operated and measured simultaneously. Two-spin correlations identify coherent spin-exchange processes across the multielectron quantum dot. We further show that different physical regimes of the mediated exchange interaction allow a reduced susceptibility to charge noise at sweet spots, as well as positive and negative coupling strengths up to several gigahertz. These properties make multielectron dots attractive as scalable, voltage-controlled coherent coupling elements.

3.
Phys Rev Lett ; 117(17): 170502, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824464

RESUMO

Achieving error rates that meet or exceed the fault-tolerance threshold is a central goal for quantum computing experiments, and measuring these error rates using randomized benchmarking is now routine. However, direct comparison between measured error rates and thresholds is complicated by the fact that benchmarking estimates average error rates while thresholds reflect worst-case behavior when a gate is used as part of a large computation. These two measures of error can differ by orders of magnitude in the regime of interest. Here we facilitate comparison between the experimentally accessible average error rates and the worst-case quantities that arise in current threshold theorems by deriving relations between the two for a variety of physical noise sources. Our results indicate that it is coherent errors that lead to an enormous mismatch between average and worst case, and we quantify how well these errors must be controlled to ensure fair comparison between average error probabilities and fault-tolerance thresholds.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26565224

RESUMO

We use a simple real-space renormalization-group approach to investigate the critical behavior of the quantum Ashkin-Teller model, a one-dimensional quantum spin chain possessing a line of criticality along which critical exponents vary continuously. This approach, which is based on exploiting the on-site symmetry of the model, has been shown to be surprisingly accurate for predicting some aspects of the critical behavior of the quantum transverse-field Ising model. Our investigation explores this approach in more generality, in a model in which the critical behavior has a richer structure but which reduces to the simpler Ising case at a special point. We demonstrate that the correlation length critical exponent as predicted from this real-space renormalization-group approach is in broad agreement with the corresponding results from conformal field theory along the line of criticality. Near the Ising special point, the error in the estimated critical exponent from this simple method is comparable to that of numerically intensive simulations based on much more sophisticated methods, although the accuracy decreases away from the decoupled Ising model point.

5.
Phys Rev Lett ; 111(22): 220402, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24329427

RESUMO

Defects in topologically ordered models have interesting properties that are reminiscent of the anyonic excitations of the models themselves. For example, dislocations in the toric code model are known as twists and possess properties that are analogous to Ising anyons. We strengthen this analogy by using the topological entanglement entropy as a diagnostic tool to identify properties of both defects and excitations in the toric code. Specifically, we show, through explicit calculation, that the toric code model including twists and dyon excitations has the same quantum dimensions, the same total quantum dimension, and the same fusion rules as an Ising anyon model.

6.
Phys Rev Lett ; 111(5): 050503, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952377

RESUMO

A new approach to single-qubit operations using exchange interactions of single electrons in gate-defined quantum dots has recently been demonstrated: the resonant exchange qubit. We show that two-qubit operations, specifically the controlled phase gate, can be performed between resonant exchange qubits very straightforwardly, using a single exchange pulse. This is in marked contrast to the best known protocols for exchange qubits where such a gate requires many pulses so that leakage processes arising from the exchange interaction can be overcome. For resonant exchange qubits a simple two-qubit gate is possible because in this mode of operation energy conservation suppresses leakage.

7.
Phys Rev Lett ; 111(10): 103603, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166666

RESUMO

The problem of estimating an unknown force driving a linear oscillator is revisited. When using linear measurement, feedback is often cited as a mechanism to enhance bandwidth, sensitivity or resolution. We show that as long as the oscillator dynamics are known, there exists a real-time estimation strategy that reproduces the same measurement record as any arbitrary feedback protocol. Consequently some form of nonlinearity is required to gain any advantage beyond estimation alone. This result holds true in both quantum and classical systems, with nonstationary forces and feedback, and in the general case of non-Gaussian and correlated noise. Recently, feedback enhanced incoherent force resolution has been demonstrated [E. Gavartin, P. Verlot, and T. J. Kippenberg, Nat. Nano. 7, 509 (2012)], with the enhancement attributed to a feedback induced modification of the mechanical susceptibility. As a proof-of-principle, we experimentally reproduce this result through straightforward filtering.

8.
Philos Trans A Math Phys Eng Sci ; 370(1979): 5338-53, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23091212

RESUMO

We revisit the stochastic master equation approach to feedback cooling of a quantum mechanical oscillator undergoing position measurement. By introducing a rotating wave approximation for the measurement and bath coupling, we can provide a more intuitive analysis of the achievable cooling in various regimes of measurement sensitivity and temperature. We also discuss explicitly the effect of backaction noise on the characteristics of the optimal feedback. The resulting rotating wave master equation has found application in our recent work on squeezing the oscillator motion using parametric driving and may have wider interest.

9.
Phys Rev Lett ; 108(24): 240505, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004249

RESUMO

Ground states of spin lattices can serve as a resource for measurement-based quantum computation. Ideally, the ability to perform quantum gates via measurements on such states would be insensitive to small variations in the Hamiltonian. Here, we describe a class of symmetry-protected topological orders in one-dimensional systems, any one of which ensures the perfect operation of the identity gate. As a result, measurement-based quantum gates can be a robust property of an entire phase in a quantum spin lattice, when protected by an appropriate symmetry.

10.
Phys Rev Lett ; 103(2): 020506, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19659193

RESUMO

Quantum computation can proceed solely through single-qubit measurements on an appropriate quantum state, such as the ground state of an interacting many-body system. We investigate a simple spin-lattice system based on the cluster-state model, and by using nonlocal correlation functions that quantify the fidelity of quantum gates performed between distant qubits, we demonstrate that it possesses a quantum (zero-temperature) phase transition between a disordered phase and an ordered "cluster phase" in which it is possible to perform a universal set of quantum gates.

11.
Phys Rev Lett ; 102(20): 200501, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19519011

RESUMO

Many proposals for quantum information processing are subject to detectable loss errors. In this Letter, we show that topological error correcting codes, which protect against computational errors, are also extremely robust against losses. We present analytical results showing that the maximum tolerable loss rate is 50%, which is determined by the square-lattice bond percolation threshold. This saturates the bound set by the no-cloning theorem. Our numerical results support this and show a graceful trade-off between tolerable thresholds for computational and loss errors.

12.
Phys Rev Lett ; 102(7): 077203, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19257710

RESUMO

We investigate the anisotropic quantum orbital compass model on an infinite square lattice by means of the infinite projected entangled-pair state algorithm. For varying values of the Jx and Jz coupling constants of the model, we approximate the ground state and evaluate quantities such as its expected energy and local order parameters. We also compute adiabatic continuations of the ground state, and show that several ground states with different local properties coexist at Jx=Jz. All our calculations are fully consistent with a first order quantum phase transition at this point, thus corroborating previous numerical evidence. Our results also suggest that tensor network algorithms are particularly fitted to characterize first order quantum phase transitions.

13.
Phys Rev Lett ; 100(9): 090403, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352681

RESUMO

One of the most significant and well-known properties of entangled states is that they may lead to violations of Bell inequalities and are thus inconsistent with any local-realistic theory. However, there are entangled states that cannot violate any Bell inequality, and in general the precise relationship between entanglement and observable nonlocality is not well understood. We demonstrate that a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality can be demonstrated in a certain kind of Bell experiment for all entangled states. Our proof of the result consists of two main steps. We first provide a simple characterization of the set of states that do not violate the CHSH inequality even after general local operations and classical communication. Second, we prove that for each entangled state sigma, there exists another state rho not violating the CHSH inequality, such that rhomultiply sign in circlesigma violates the CHSH inequality.

14.
Science ; 311(5764): 1133-5, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16497928

RESUMO

Quantum computers hold great promise for solving interesting computational problems, but it remains a challenge to find efficient quantum circuits that can perform these complicated tasks. Here we show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits as a geometric problem, we open up the possibility of using the mathematical techniques of Riemannian geometry to suggest new quantum algorithms or to prove limitations on the power of quantum computers.

15.
Phys Rev Lett ; 90(15): 157903, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12732072

RESUMO

While all bipartite pure entangled states violate some Bell inequality, the relationship between entanglement and nonlocality for mixed quantum states is not well understood. We introduce a simple and efficient algorithmic approach for the problem of constructing local hidden variable theories for quantum states. The method is based on constructing a so-called symmetric quasiextension of the quantum state that gives rise to a local hidden variable model with a certain number of settings for the observers Alice and Bob.

16.
Phys Rev Lett ; 91(25): 250801, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14754102

RESUMO

The shot-noise detection limit in current high-precision magnetometry [Nature (London) 422, 596 (2003)] is a manifestation of quantum fluctuations that scale as 1/sqrt[N] in an ensemble of N atoms. Here, we develop a procedure that combines continuous measurement and quantum Kalman filtering [Rep. Math. Phys. 43, 405 (1999)]] to surpass this conventional limit by exploiting conditional spin squeezing to achieve 1/N field sensitivity. Our analysis demonstrates the importance of optimal estimation for high bandwidth precision magnetometry at the Heisenberg limit and also identifies an approximate estimator based on linear regression.

17.
Phys Rev Lett ; 89(13): 133602, 2002 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-12225027

RESUMO

We present an experimental demonstration of the power of feedback in quantum metrology, confirming the predicted [H. M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995)]] superior performance of an adaptive homodyne technique for single-shot measurement of optical phase. For measurements performed on weak coherent states with no prior knowledge of the signal phase, adaptive homodyne estimation approaches closer to the intrinsic quantum uncertainty than any previous technique. Our results underscore the importance of real-time feedback for reaching quantum limits in measurement and control.

18.
Phys Rev Lett ; 89(6): 068101, 2002 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12190612

RESUMO

We report high time-resolution measurements of photon statistics from pairs of dye molecules coupled by fluorescence resonance energy transfer (FRET). In addition to quantum-optical photon antibunching, we observe photon bunching on a time scale of several nanoseconds. We show by numerical simulation that configuration fluctuations in the coupled fluorophore system could account for minor deviations of our data from predictions of basic Förster theory. With further characterization we believe that FRET photon statistics could provide a unique tool for studying DNA mechanics on time scales from 10(-9)-10(-3) s.


Assuntos
DNA/química , Corantes Fluorescentes/química , Modelos Químicos , Carbocianinas/química , Transferência de Energia , Método de Monte Carlo , Proteínas/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA