Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0032524, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426748

RESUMO

Gram-negative bacteria have a thin peptidoglycan layer between the cytoplasmic and outer membranes protecting the cell from osmotic challenges. Hydrolases of this structure are needed to cleave bonds to allow the newly synthesized peptidoglycan strands to be inserted by synthases. These enzymes need to be tightly regulated and their activities coordinated to prevent cell lysis. To better understand this process in Escherichia coli, we probed the genetic interactions of mrcA (encodes PBP1A) and mrcB (encodes PBP1B) with genes encoding peptidoglycan amidases and endopeptidases in envelope stress conditions. Our extensive genetic interaction network analysis revealed relatively few combinations of hydrolase gene deletions with reduced fitness in the absence of PBP1A or PBP1B, showing that none of the amidases or endopeptidases is strictly required for the functioning of one of the class A PBPs. This illustrates the robustness of the peptidoglycan growth mechanism. However, we discovered that the fitness of ∆mrcB cells is significantly reduced under high salt stress and in vitro activity assays suggest that this phenotype is caused by a reduced peptidoglycan synthesis activity of PBP1A at high salt concentration.IMPORTANCEEscherichia coli and many other bacteria have a surprisingly high number of peptidoglycan hydrolases. These enzymes function in concert with synthases to facilitate the expansion of the peptidoglycan sacculus under a range of growth and stress conditions. The synthases PBP1A and PBP1B both contribute to peptidoglycan expansion during cell division and growth. Our genetic interaction analysis revealed that these two penicillin-binding proteins (PBPs) do not need specific amidases, endopeptidases, or lytic transglycosylases for function. We show that PBP1A and PBP1B do not work equally well when cells encounter high salt stress and demonstrate that PBP1A alone cannot provide sufficient PG synthesis activity under this condition. These results show how the two class A PBPs and peptidoglycan hydrolases govern cell envelope integrity in E. coli in response to environmental challenges and particularly highlight the importance of PBP1B in maintaining cell fitness under high salt conditions.


Assuntos
Proteínas de Escherichia coli , Peptidoglicano Glicosiltransferase , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Parede Celular/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo
2.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014365

RESUMO

MOTIVATION: High-throughput chemical genomic screens produce informative datasets, providing valuable insights into unknown gene function on a genome-wide level. However, there is currently no comprehensive analytic package publicly available. We developed ChemGAPP to bridge this gap. ChemGAPP integrates various steps in a streamlined and user-friendly format, including rigorous quality control measures to curate screening data. RESULTS: ChemGAPP provides three sub-packages for different chemical-genomic screens: ChemGAPP Big for large-scale screens; ChemGAPP Small for small-scale screens; and ChemGAPP GI for genetic interaction screens. ChemGAPP Big, tested against the Escherichiacoli KEIO collection, revealed reliable fitness scores which displayed biologically relevant phenotypes. ChemGAPP Small demonstrated significant changes in phenotype in a small-scale screen. ChemGAPP GI was benchmarked against three sets of genes with known epistasis types and successfully reproduced each interaction type. AVAILABILITY AND IMPLEMENTATION: ChemGAPP is available at https://github.com/HannahMDoherty/ChemGAPP, as a standalone Python package as well as Streamlit applications.


Assuntos
Genômica , Software , Genoma , Fenótipo , Testes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...