Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 16(2): 143-58, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26836592

RESUMO

At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Geologia , Robótica , Volatilização , Água/química
2.
Astrobiology ; 11(4): 303-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21545270

RESUMO

The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.


Assuntos
Bactérias/isolamento & purificação , Clima Desértico , Meio Ambiente Extraterreno/química , Lipídeos/isolamento & purificação , Marte , Voo Espacial , Regiões Antárticas , Bactérias/química , Bactérias/genética , Biomarcadores/análise , DNA Bacteriano/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Exobiologia , Ácidos Graxos/análise , Fósseis , Geografia , Gelo , Lipídeos/química , Espectrometria de Massas , Filogenia
3.
Astrobiology ; 10(8): 821-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21087162

RESUMO

Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Marte , Evolução Planetária , Vida , Água/química
4.
Proc Natl Acad Sci U S A ; 107(27): 12095-100, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20616087

RESUMO

Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.


Assuntos
Meio Ambiente Extraterreno/química , Marte , Silicatos/análise , Silicatos de Alumínio/análise , Silicatos de Alumínio/química , Asbestos Serpentinas/análise , Asbestos Serpentinas/química , Cloretos/análise , Cloretos/química , Compostos Férricos/análise , Compostos Férricos/química , Temperatura Alta , Caulim/análise , Caulim/química , Minerais/análise , Minerais/química , Silicatos/química , Análise Espectral/métodos , Fatores de Tempo
5.
Astrobiology ; 5(6): 778-95, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16379531

RESUMO

Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.


Assuntos
Gelo , Planetas , Voo Espacial/métodos , Água , Atmosfera , Marte , Mercúrio , Lua , Vênus
6.
Nature ; 431(7007): 423-6, 2004 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-15386004

RESUMO

Several lines of evidence have recently reinforced the hypothesis that an ocean existed on early Mars. Carbonates are accordingly expected to have formed from oceanic sedimentation of carbon dioxide from the ancient martian atmosphere. But spectral imaging of the martian surface has revealed the presence of only a small amount of carbonate, widely distributed in the martian dust. Here we examine the feasibility of carbonate synthesis in ancient martian oceans using aqueous equilibrium calculations. We show that partial pressures of atmospheric carbon dioxide in the range 0.8-4 bar, in the presence of up to 13.5 mM sulphate and 0.8 mM iron in sea water, result in an acidic oceanic environment with a pH of less than 6.2. This precludes the formation of siderite, usually expected to be the first major carbonate mineral to precipitate. We conclude that extensive interaction between an atmosphere dominated by carbon dioxide and a lasting sulphate- and iron-enriched acidic ocean on early Mars is a plausible explanation for the observed absence of carbonates.


Assuntos
Ácidos/química , Carbonatos/análise , Carbonatos/química , Meio Ambiente Extraterreno/química , Marte , Água/química , Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/química , Precipitação Química , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/química , Oceanos e Mares , Pressão Parcial , Sulfatos/análise , Sulfatos/química , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...