Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(12): 21609-21620, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224876

RESUMO

Semiconductor saturable absorber mirrors (SESAMs) are key devices for passive mode locking of numerous laser types and have been implemented for a variety of operational wavelengths ranging from 800 nm to 2400 nm. However, for 1560 nm the fabrication of SESAMs based on the standard AlAs/GaAs material system requires highly strained InGaAs absorber layers, which reduce the device efficiency and compromise fragile long-term performance. Here, we present SESAMs for ultrashort pulse generation at 1560 nm that are grown entirely lattice-matched to InP and thus have the potential for less structural defects and a higher operational lifetime. A highly reflective InGaAlAs-InAlAs Bragg mirror is capped with a heavily iron doped InGaAs:Fe absorber layer, which facilitates an unprecedented combination of sub-picosecond carrier lifetime and high optical quality. Therefore, the presented SESAMs show ultrafast response (τA < 1 ps), low non-saturable losses and high effective modulation depth (ΔReff ≥ 5.8%). Moreover, a nearly anti-resonant SESAM design provides high saturation and roll-over fluence (Fsat ≥ 17  µJ/cm2, F2 ≥ 21 mJ/cm2). With these SESAMs, we show self-starting and stable mode locking of an erbium doped fiber laser at 80 MHz repetition rate, providing ultrashort optical pulses at 17.5  mW average power.

2.
Sci Adv ; 6(37)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917703

RESUMO

Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities. However, it is challenging to reduce the size of biocompatible thermometers down to submicrometers, despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Here, using quantum nanothermometers based on optically accessible electron spins in nanodiamonds, we demonstrate in vivo real-time temperature monitoring inside Caenorhabditis elegans worms. We developed a microscope system that integrates a quick-docking sample chamber, particle tracking, and an error correction filter for temperature monitoring of mobile nanodiamonds inside live adult worms with a precision of ±0.22°C. With this system, we determined temperature increases based on the worms' thermogenic responses during the chemical stimuli of mitochondrial uncouplers. Our technique demonstrates the submicrometer localization of temperature information in living animals and direct identification of their pharmacological thermogenesis, which may allow for quantification of their biological activities based on temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...