Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 208: 97-107, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658836

RESUMO

Inter-fibre adhesion is a key contributing factor to the mechanical response and functionality of cellulose-based biomaterials. 'Dip-and-Drag' lateral force atomic force microscopy technique is used here to evaluate the influence of arabinoxylan and xyloglucan on interactions between nanoscale cellulose fibres within a hydrated network of bacterial cellulose. A cohesive zone model of the detachment event between two nano-fibres is used to interpret the experimental data and evaluate inter-fibre adhesion energy. The presence of xyloglucan or arabinoxylan is found to increase the adhesive energy by a factor of 4.3 and 1.3, respectively, which is consistent with these two hemicellulose polysaccharides having different specificity of hydrogen bonding with cellulose. Importantly, xyloglucan's ability to strengthen adhesion between cellulose nano-fibres supports emergent models of the primary plant cell walls (Park & Cosgrove, 2012b), which suggest that xyloglucan chains confined within cellulose-cellulose junctions play a key role in cell wall's mechanical response.


Assuntos
Celulose/química , Glucanos/química , Polissacarídeos/química , Xilanos/química , Gluconacetobacter xylinus/química , Hidrogéis/química , Ligação de Hidrogênio , Microscopia de Força Atômica
2.
Langmuir ; 32(50): 13340-13348, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993025

RESUMO

Adhesive interactions between nanofibers strongly influence the mechanical behavior of soft materials composed of fibrous networks. We use atomic force microscopy in lateral force mode to drag a cantilever tip through fibrous networks, and use the measured lateral force response to determine the adhesive forces between fibers of the order of 100 nm diameter. The peaks in lateral force curves are directly related to the detachment energy between two fibers; the data is analyzed using the Jarzynski equality to yield the average adhesion energy of the weakest links. The method is successfully used to measure adhesion forces arising from van der Waals interactions between electrospun polymer fibers in networks of varying density. This approach overcomes the need to isolate and handle individual fibers, and can be readily employed in the design and evaluation of advanced materials and biomaterials which, through inspiration from nature, are increasingly incorporating nanofibers. The data obtained with this technique may also be of critical importance in the development of network models capable of predicting the mechanics of fibrous materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...