Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(25): G1-G9, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613189

RESUMO

This paper conducts experiments that demonstrate the utility of a general scaling law (GSL) for far-field propagation. In practice, the GSL accurately predicts the diffraction-limited peak irradiance in a far-field plane, regardless of the beam shape in a near-field plane. Within the experimental setup, we use a reflective, phase-only spatial light modulator to generate various beam shapes from expanded and collimated laser-source illumination, including both flattop and Gaussian beams with obscurations, in addition to phased arrays with these beam shapes. We then focus the resulting near-field source plane to a far-field target plane and measure the peak target irradiance to compare to the associated GSL prediction. Overall, the results show excellent agreement with less than 1% error for all test cases. Such experiments present a convenient and relatively inexpensive approach to demonstrating laser-system architectures (of varying complexity) that involve far-field propagation.

2.
J Opt Soc Am A Opt Image Sci Vis ; 33(12): 2477-2484, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906274

RESUMO

A general far-field wave propagation scaling law is developed. The formulation is simple but predicts diffraction peak irradiance accurately in the far field, regardless of the near-field beam type or geometry, including laser arrays. We also introduce the concept of the equivalent uniform circular beam that generates a far-field peak irradiance and power-in-the-bucket that are the same as an arbitrary laser source. Applications to clipped Gaussian beams with an obscuration, both as a single beam and as an array of beams, are shown.

3.
Opt Express ; 23(20): 26853-62, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480196

RESUMO

The Fresnel diffraction integral form of optical wave propagation and the more general Linear Canonical Transforms (LCT) are cast into a matrix transformation form. Taking advantage of recent efficient matrix multiply algorithms, this approach promises an efficient computational and analytical tool that is competitive with FFT based methods but offers better behavior in terms of aliasing, transparent boundary condition, and flexibility in number of sampling points and computational window sizes of the input and output planes being independent. This flexibility makes the method significantly faster than FFT based propagators when only a single point, as in Strehl metrics, or a limited number of points, as in power-in-the-bucket metrics, are needed in the output observation plane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...