Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 20(6): 111-119, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31120639

RESUMO

BACKGROUND AND PURPOSE: Abdominal organ motion seriously compromises the targeting accuracy for particle therapy in patients with pancreatic adenocarcinoma. This study compares three different abdominal corsets regarding their ability to reduce pancreatic motion and their potential usability in particle therapy. MATERIALS AND METHODS: A patient-individualized polyurethane (PU), a semi-individualized polyethylene (PE), and a patient-individualized three-dimensional-scan based polyethylene (3D-PE) corset were manufactured for one healthy volunteer. Time-resolved volumetric four-dimensional-magnetic resonance imaging (4D-MRI) and single-slice two-dimensional (2D) cine-MRI scans were acquired on two consecutive days to compare free-breathing motion patterns with and without corsets. The corset material properties, such as thickness variance, material homogeneity in Hounsfield units (HU) on computed tomography (CT) scans, and manufacturing features were compared. The water equivalent ratio (WER) of corset material samples was measured using a multi-layer ionization chamber for proton energies of 150 and 200 MeV. RESULTS: All corsets reduced the pancreatic motion on average by 9.6 mm in inferior-superior and by 3.2 mm in anterior-posterior direction. With corset, the breathing frequency was approximately doubled and the day-to-day motion variations were reduced. The WER measurements showed an average value of 0.993 and 0.956 for the PE and 3DPE corset, respectively, and of 0.298 for the PU corset. The PE and 3DPE corsets showed a constant thickness of 2.8 ± 0.2 and 3.8 ± 0.2 mm, respectively and a homogeneous material composition with a standard deviation (SD) of 31 and 32 HU, respectively. The PU corset showed a variable thickness of 4.2 - 25.6 mm and a heterogeneous structure with air inclusions with an SD of 113 HU. CONCLUSION: Abdominal corsets may be effective devices to reduce pancreatic motion. For particle therapy, PE-based corsets are preferred over PU-based corset due to their material homogeneity and constant thickness.


Assuntos
Abdome/diagnóstico por imagem , Adenocarcinoma/radioterapia , Imageamento por Ressonância Magnética/métodos , Pâncreas/efeitos da radiação , Neoplasias Pancreáticas/radioterapia , Respiração , Técnicas de Imagem de Sincronização Respiratória/métodos , Abdome/patologia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Feminino , Tomografia Computadorizada Quadridimensional , Humanos , Masculino , Movimento , Pâncreas/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia
2.
Phys Med Biol ; 64(8): 085011, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30893660

RESUMO

Abdominal organ motion may lead to considerable uncertainties in pencil-beam scanning (PBS) proton therapy of pancreatic cancer. Beam gating, where irradiation only occurs in certain breathing phases in which the gating conditions are fulfilled, may be an option to reduce the interplay effect between tumor motion and the scanning beam. This study aims to, first, determine suitable gating windows with respect to effectiveness (low interplay effect) and efficiency (high duty cycles). Second, it investigates whether beam gating allows for a better mitigation of the interplay effect along the treatment course than free-breathing irradiations. Based on synthetic 4D-CTs, generated by warping 3D-CTs with vector fields extracted from time-resolved magnetic resonance imaging (4D-MRI) for 8 pancreatic cancer patients, 4D dose calculations (4DDC) were performed to analyze the duty cycle and homogeneity index HI = d5/d95 for four different gating scenarios. These were based on either fixed threshold values of CTV (clinical target volume) mean or maximum motion amplitudes (5 mm), relative CTV motion amplitudes (30%) or CTV overlap criteria (95%), respectively. 4DDC for 28-fractions treatment courses were performed with fixed and variable initial breathing phases to investigate the fractionation-induced mitigation of the interplay effect. Gating criteria, based on patient-specific relative 30% CTV motion amplitudes, showed the significantly best HI values with sufficient duty cycles, in contrast to inferior results by either fixed gating thresholds or overlap criteria. For gated treatments with 28 fractions, less fractionation-induced mitigation of the interplay effect was observed for gating criteria with gating windows ⩾30%, compared to free-breathing treatments. The gating effectiveness for multiple fractions was improved by allowing a variable initial breathing phase. Gating with relative amplitude thresholds are effective for proton therapy of pancreatic cancer. By combining beam gating with variable initial breathing phases, a pronounced mitigation of the interplay effect by fractionation can be achieved.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração , Fracionamento da Dose de Radiação , Humanos , Movimento (Física) , Neoplasias Pancreáticas/diagnóstico por imagem
3.
Radiat Oncol ; 14(1): 30, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732657

RESUMO

BACKGROUND: Time-resolved volumetric magnetic resonance imaging (4DMRI) offers the potential to analyze 3D motion with high soft-tissue contrast without additional imaging dose. We use 4DMRI to investigate the interplay effect for pencil beam scanning (PBS) proton therapy of pancreatic cancer and to quantify the dependency of residual interplay effects on the number of treatment fractions. METHODS: Based on repeated 4DMRI datasets for nine pancreatic cancer patients, synthetic 4DCTs were generated by warping static 3DCTs with 4DMRI deformation vector fields. 4D dose calculations for scanned proton therapy were performed to quantify the interplay effect by CTV coverage (v95) and dose homogeneity (d5/d95) for incrementally up to 28 fractions. The interplay effect was further correlated to CTV motion characteristics. For quality assurance, volume and mass conservation were evaluated by Jacobian determinants and volume-density comparisons. RESULTS: For the underlying patient cohort with CTV motion amplitudes < 15 mm, we observed significant correlations between CTV motion amplitudes and both the length of breathing cycles and the interplay effect. For individual fractions, tumor underdosage down to v95 = 70% was observed with pronounced dose heterogeneity (d5/d95 = 1.3). For full × 28 fractionated treatments, we observed a mitigation of the interplay effect with increasing fraction numbers. On average, after seven fractions, a CTV coverage with 95-107% of the prescribed dose was reached with sufficient dose homogeneity. For organs at risk, no significant differences were found between the static and accumulated dose plans for 28 fractions. CONCLUSION: Intrafractional organ motion exhibits a large interplay effect for PBS proton therapy of pancreatic cancer. The interplay effect correlates with CTV motion, but can be mitigated efficiently by fractionation, mainly due to different breathing starting phases in fractionated treatments. For hypofractionated treatments, a further restriction of motion may be required. Repeated 4DMRI measurements are a viable tool for pre- and post-treatment evaluations of the interplay effect.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Fracionamento da Dose de Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimentos dos Órgãos , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica
4.
Med Phys ; 46(1): 25-33, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30367485

RESUMO

PURPOSE: Systems for integrated magnetic resonance guided radiation therapy (MRgRT) provide real-time and online MRI guidance for unequaled targeting performance of moving tumors and organs at risk. The clinical introduction of such systems requires dedicated methods for commissioning and routine machine quality assurance (QA). The aim of the study was to develop a commissioning protocol and method for automatic quantification of target motion and geometric accuracy using a 4D MRI motion phantom. MATERIALS AND METHODS: The commissioning was performed on a clinically used 3 T MR scanner. The phantom was positioned on a flat tabletop overlay using an in-house constructed base plate for a quick and reproducible setup. The torso-shaped phantom body, which was filled with mineral oil as signal generating medium, included a 3D grid structure for image distortion analysis and a cylindrical thru-hole in which a software-controlled moving rod with a hypo-intense background gel and a decentralized hyper-intense target simulated 3D organ motion patterns. To allow for sequence optimization, MR relaxometry was performed to determine the longitudinal T1 and transverse T2 relaxation times of both target and background gel in the movable cylinder. The geometric image distortion was determined as the mean and maximum 3D Euclidean distance (Δmean , Δmax ) of grid points determined by nonrigid registration of a 3D spoiled gradient echo MRI scan and a CT scan. Sinusoidal 1D/2D/3D motion trajectories, varying in amplitude and frequency, as well as an exemplary 1D MR navigator diaphragm motion pattern extracted from a healthy volunteer scan, were scanned by means of 2D cine MRI and 4D MRI. Target positions were automatically extracted from 2D cine MRI using an in-house developed software tool. RESULTS: The base plate enabled a reproducible setup with a deviation of <1 mm in all directions. Relaxometry yielded T1 /T2 values for target and background gel of 208.1 ± 2.8/30.5 ± 4.7 ms and 871 ± 36/13.4  ±  1.3 ms, respectively. The 3D geometric image distortion increased with distance from the magnetic isocenter, with Δmean  = 0.58 ± 0.30 mm and Δmax  = 1.31 mm. The frequencies of the reconstructed motion patterns agreed with the preset values within 0.5%, whereas the reconstructed amplitudes showed a maximum deviation to the preset amplitudes of <0.5 mm in AP/LR direction and <0.3 mm in IS direction. CONCLUSION: A method and protocol for commissioning of a 4D MRI motion phantom on a 3 T MR scanner for MRgRT was developed. High-contrast and geometrically reliable 2D cine MR images of the phantom's moving target could be obtained. The preset motion parameters could be extracted with sufficient spatio-temporal accuracy from 2D cine MRI in all motion directions. The overall 3D geometric image distortion of <1.31 mm within the phantom grid confirms geometric accuracy of the clinically utilized 3D spoiled gradient echo sequence. The method developed can be used for routine QA tests of spatio-temporally resolved MRI data in MRgRT.


Assuntos
Imageamento Tridimensional/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Radioterapia Guiada por Imagem , Movimento , Controle de Qualidade
5.
Phys Med Biol ; 63(16): 165005, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30020079

RESUMO

4D magnetic resonance imaging (4DMRI) has a high potential for pancreatic cancer treatments using proton therapy, by providing time-resolved volumetric images with a high soft-tissue contrast without exposing the patient to any additional imaging dose. In this study, we aim to show the feasibility of 4D treatment planning for pencil beam scanning (PBS) proton therapy of pancreatic cancer, based on five repeated 4DMRI datasets and 4D dose calculations (4DDC) for one pancreatic cancer patient. To investigate the dosimetric impacts of organ motion, deformation vector fields were extracted from 4DMRI, which were then used to warp a static CT of the patient, so as to generate synthetic 4DCT (4DCT-MRI). CTV motion amplitudes <15 mm were observed for this patient. The results from 4DDC show pronounced interplay effects in the CTV with dose homogeneity d5/d95 and dose coverage v95 being 1.14 and 91%, respectively, after a single fraction of the treatment. An averaging effect was further observed when increasing the number of fractions. Motion effects can become less dominant and dose homogeneity d5/d95 = 1.03 and dose coverage v95 = [Formula: see text] within the CTV can be achieved after 28 fractions. The observed inter-fractional organ and tumor motion variations underline the importance of 4D imaging before and during PBS proton therapy.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Órgãos em Risco/efeitos da radiação , Neoplasias Pancreáticas/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Movimentos dos Órgãos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Radiometria/métodos
6.
J Acoust Soc Am ; 140(6): 4213, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28040052

RESUMO

The sound characteristics of both labial and lingual organ pipes are affected to a great extent by the reflection properties of the resonators. In this paper, the reflection properties of sloped pipe terminations are examined and the possible applications in organ building practice are investigated. Sloped shallots of reed organ pipes with different termination angles are of particular interest in this study. For the examination of the reflection properties two different approaches are applied. Sound pulse reflection measurements on model geometries provide experimental data in the time domain, while finite element simulations yield reflection coefficients in the frequency domain. These two remarkably different approaches are shown to provide consistent results for all examined geometries. Laboratory measurements performed on experimental labial pipes and "Trompete" (trumpet) shallots demonstrate some of the effects of sloped terminations on the sound of organ pipes and validate the applicability of the results obtained by the model measurements and simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...