Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 59(1): 177-190, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34642892

RESUMO

Intracellular quality control regulated by autophagy process is important for maintenance of cellular homeostasis. Deregulation of autophagy and more specifically mitophagy leads to accumulation of the misfolded proteins and damaged mitochondria that in turn leads to the cell loss. Alteration of autophagy and mitophagy has shown to be involved in the number of disorders including neurodegenerative diseases. Autophagy and mitophagy could be activated by short-time acidification of the cytosol; however, most of the compounds which can induce it are toxic. Here, we tested several organic compounds which are involved in cellular metabolism on their ability to change intracellular pH and induce mitophagy/autophagy. We have found that lactate and pyruvate are able to reduce intracellular pH in non-toxic concentrations. Short-term (2 h) and long-term (24 h) incubation of the cells with lactate and pyruvateinduced mitophagy and autophagy. Incubation of the SH-SY5Y cells or primary neurons and astrocytes with lactate or pyruvate also activated mitophagy and autophagy after MPP + treatment that led to recovery of mitochondrial function and protection of these cells against apoptotic and necrotic death. Thus, pyruvate- or lactate-induced acidification of cytosol activates cell protective mitophagy and autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Ácido Láctico/farmacologia , Mitofagia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , Ácido Pirúvico/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/metabolismo , Neurônios/metabolismo , Ratos
2.
J Bioenerg Biomembr ; 51(3): 175-188, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31054074

RESUMO

DJ-1 protein has multiple specific mechanisms to protect dopaminergic neurons against neurodegeneration in Parkinson's disease. Wild type DJ-1 can acts as oxidative stress sensor and as an antioxidant. DJ-1 exhibits the properties of molecular chaperone, protease, glyoxalase, transcriptional regulator that protects mitochondria from oxidative stress. DJ-1 increases the expression of two mitochondrial uncoupling proteins (UCP 4 and UCP5), that decrease mitochondrial membrane potential and leads to the suppression of ROS production, optimizes of a number of mitochondrial functions, and is regarded as protection for the neuronal cell survival. We discuss also the stabilizing interaction of DJ-1 with the mitochondrial Bcl-xL protein, which regulates the activity of (Inositol trisphosphate receptor) IP3R, prevents the cytochrome c release from mitochondria and inhibits the apoptosis activation. Upon oxidative stress DJ-1 is able to regulate various transcription factors including nuclear factor Nrf2, PI3K/PKB, and p53 signal pathways. Stress-activated transcription factor Nrf2 regulates the pathways to protect cells against oxidative stress and metabolic pathways initiating the NADPH and ATP production. DJ-1 induces the Nrf2 dissociation from its inhibitor Keap1 (Kelch-like ECH-associated protein 1), promoting Nrf2 nuclear translocation and binding to antioxidant response elements. DJ-1 is shown to be a co-activator of the transcription factor NF-kB. Under nitrosative stress, DJ-1 may regulate PI3K/PKB signaling through PTEN transnitrosylation, which leads to inhibition of phosphatase activity. DJ-1 has a complex modulating effect on the p53 pathway: one side DJ-1 directly binds to p53 to restore its transcriptional activity and on the other hand DJ-1 can stimulate deacylation and suppress p53 transcriptional activity. The ability of the DJ-1 to induce activation of different transcriptional factors and change redox balance protect neurons against aggregation of α-synuclein and oligomer-induced neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Neurônios Dopaminérgicos/patologia , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteína Desglicase DJ-1/genética , Fatores de Transcrição/genética
3.
Biochem Soc Trans ; 45(4): 1025-1033, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28733489

RESUMO

The number of the people affected by neurodegenerative disorders is growing dramatically due to the ageing of population. The major neurodegenerative diseases share some common pathological features including the involvement of mitochondria in the mechanism of pathology and misfolding and the accumulation of abnormally aggregated proteins. Neurotoxicity of aggregated ß-amyloid, tau, α-synuclein and huntingtin is linked to the effects of these proteins on mitochondria. All these misfolded aggregates affect mitochondrial energy metabolism by inhibiting diverse mitochondrial complexes and limit ATP availability in neurones. ß-Amyloid, tau, α-synuclein and huntingtin are shown to be involved in increased production of reactive oxygen species, which can be generated in mitochondria or can target this organelle. Most of these aggregated proteins are capable of deregulating mitochondrial calcium handling that, in combination with oxidative stress, lead to opening of the mitochondrial permeability transition pore. Despite some of the common features, aggregated ß-amyloid, tau, α-synuclein and huntingtin have diverse targets in mitochondria that can partially explain neurotoxic effect of these proteins in different brain regions.

4.
PLoS One ; 8(5): e63483, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696827

RESUMO

PURPOSE: This study investigated possible mechanisms of autoregulation of Ca(2+) signalling pathways in adipocytes responsible for Ca(2+) and NO oscillations and switching phenomena promoted by acetylcholine (ACh), norepinephrine (NE) and atrial natriuretic peptide (ANP). METHODS: Fluorescent microscopy was used to detect changes in Ca(2+) and NO in cultures of rodent white adipocytes. Agonists and inhibitors were applied to characterize the involvement of various enzymes and Ca(2+)-channels in Ca(2+) signalling pathways. RESULTS: ACh activating M3-muscarinic receptors and Gßγ protein dependent phosphatidylinositol 3 kinase induces Ca(2+) and NO oscillations in adipocytes. At low concentrations of ACh which are insufficient to induce oscillations, NE or α1, α2-adrenergic agonists act by amplifying the effect of ACh to promote Ca(2+) oscillations or switching phenomena. SNAP, 8-Br-cAMP, NAD and ANP may also produce similar set of dynamic regimes. These regimes arise from activation of the ryanodine receptor (RyR) with the implication of a long positive feedback loop (PFL): Ca(2+)→NO→cGMP→cADPR→Ca(2+), which determines periodic or steady operation of a short PFL based on Ca(2+)-induced Ca(2+) release via RyR by generating cADPR, a coagonist of Ca(2+) at the RyR. Interplay between these two loops may be responsible for the observed effects. Several other PFLs, based on activation of endothelial nitric oxide synthase or of protein kinase B by Ca(2+)-dependent kinases, may reinforce functioning of main PFL and enhance reliability. All observed regimes are independent of operation of the phospholipase C/Ca(2+)-signalling axis, which may be switched off due to negative feedback arising from phosphorylation of the inositol-3-phosphate receptor by protein kinase G. CONCLUSIONS: This study presents a kinetic model of Ca(2+)-signalling system operating in adipocytes and integrating signals from various agonists, which describes it as multivariable multi feedback network with a family of nested positive feedback.


Assuntos
Acetilcolina/farmacologia , Adipócitos/metabolismo , Fator Natriurético Atrial/metabolismo , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , GMP Cíclico/metabolismo , Óxidos de Nitrogênio/metabolismo , Norepinefrina/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos
5.
Cell Signal ; 15(2): 209-16, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12464392

RESUMO

The mechanism of adrenergically activated calcium signalling in isolated murine brown preadipocytes (stromal-vascular fraction) was studied with Fura-2. Norepinephrine (NE) generated in preadipocytes a slow Ca(2+)-response ( approximately 10 nM/min) without a burst and a maximum, whereas in mature brown adipocytes, the quick burst reached 1.5 microM [Ca(2+)](i). Thapsigargin, which is known to discharge Ca(2+) ions from the IP(3)-sensitive stores, initiated a huge capacitative calcium entry in mature brown adipocytes but failed to stimulate a response in preadipocytes. The beta-selective antagonist nadolol almost completely prevented the effect of NE on [Ca(2+)](i), while the antagonist of alpha-adrenoceptors phentolamine caused only a approximately 25% reduction of the cellular response. Forskolin or the cell-permeable Br-cAMP caused [Ca(2+)](i) rise, which were even higher than with NE. The protein kinase A (PKA) inhibitor N-[2-(p-bromocynnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89) reduced and the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX), N-cyclohexyl-N-(2-hydroxyethyl)-4-(6-(1,2-dihydro-2-oxoquinolyloxy))butyramide (OPC-3911), 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidone (Ro 20-1724) or the protein phosphatase inhibitor okadaic acid enhanced the NE-, isoproterenol- or forskolin-initiated cellular calcium responses. It was concluded that (i) brown preadipocytes lacked a trigger mechanism of initiation of [Ca(2+)](i) rises and (ii) the cAMP- and protein kinase A-mediated phosphorylation played an important role in the beta-adrenoceptor-initiated calcium signalling in these cells. All these features distinguish brown adipocyte precursors from differentiated brown adipocytes, where calcium signalling is initiated exclusively via alpha(1)-adrenoceptors and the trigger mechanism.


Assuntos
Adipócitos/efeitos dos fármacos , Tecido Adiposo Marrom/citologia , Agonistas alfa-Adrenérgicos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Norepinefrina/farmacologia , Sulfonamidas , 1-Metil-3-Isobutilxantina/farmacologia , 4-(3-Butoxi-4-metoxibenzil)-2-imidazolidinona/farmacologia , Adipócitos/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Isoproterenol/farmacologia , Isoquinolinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia , Receptores Adrenérgicos beta/metabolismo , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...