Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1346426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486866

RESUMO

Introduction: Due to the high incidence of implant failures, dual functionalization of titanium surfaces with antibacterial and osteogenic agents, like silver (Ag) and strontium (Sr), has gained significant attention in recent years. However, so far, the combined antibacterial and osteoinductive effectiveness of Ag/Sr-based titanium surface coatings has only been analyzed in individual studies. Methods: This systematic review aims to evaluate the existing scientific literature regarding the PICOS question "Does dual incorporation of strontium/silver enhances the osteogenic and anti-bacterial characteristics of Ti surfaces in vitro?". As a result of a web-based search adhering to the PRISMA Guidelines using three electronic databases (PubMed, Scopus, and Web of Science) until March 31, 2023, a total of 69 publications were identified as potentially relevant and 17 of which were considered appropriate for inclusion into this review. Results and Discussion: In all included publications, the use of Sr/Ag combination showed enhanced osteogenic and antibacterial effects, either alone or in combination with other agents. Moreover, the combination of Sr and Ag shows potential to synergistically enhance these effects. Nevertheless, further studies need to validate these findings under clinically more relevant conditions and evaluate the mechanism of antimicrobial and osteogenic activity of Sr/Ag combination.

2.
Nanoscale Adv ; 6(5): 1447-1459, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38419865

RESUMO

Early detection of specific oral bacterial species would enable timely treatment and prevention of certain oral diseases. In this work, we investigated the sensitivity and specificity of functionalized gold nanoparticles for plasmonic sensing of oral bacteria. This approach is based on the aggregation of positively charged gold nanoparticles on the negatively charged bacteria surface and the corresponding localized surface plasmon resonance (LSPR) shift. Gold nanoparticles were synthesized in different sizes, shapes and functionalization. A biosensor array was developed consisting of spherical- and anisotropic-shaped (1-hexadecyl) trimethylammonium bromide (CTAB) and spherical mercaptoethylamine (MEA) gold nanoparticles. It was used to detect four oral bacterial species (Aggregatibacter actinomycetemcomitans, Actinomyces naeslundii, Porphyromonas gingivalis and Streptococcus oralis). The plasmonic response was measured and analysed using RGB and UV-vis absorbance values. Both methods successfully detected the individual bacterial species based on their unique responses to the biosensor array. We present an in-depth study relating the bacteria zeta potential and AuNP aggregation to plasmonic response. The sensitivity depends on multiple parameters, such as bacterial species and concentration as well as gold nanoparticle shape, concentration and functionalization.

3.
J Orofac Orthop ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409443

RESUMO

PURPOSE: Acidification by bacterial biofilms at the bracket/tooth interface is one of the most common problems in fixed orthodontic treatments, which can lead to white spot lesions (WSL) and caries. As lingual brackets were shown to exhibit reduced WSL formation clinically, the aim of this in situ study was to compare initial intraoral biofilm formation and acidification on bracket-like specimens placed buccally and palatally in the upper jaw as a possible cause for this observation. METHODS: Intraoral biofilm was collected from splints equipped with buccally and palatally exposed test specimens, which were worn by 12 volunteers for a total of 48 h. The test specimens consisted of standard bracket material cylinders on top of a hydroxyapatite disc to represent the bracket/tooth interface. They were analyzed for three-dimensional biofilm volume and live/dead distribution by fluorescence staining and confocal laser scanning microscopy as well as for acidification by fluorescence-based pH ratiometry. RESULTS: Similar general biofilm morphology with regard to volume and viability could be detected for buccally and palatally exposed specimens. For pH values, biofilms from both positions showed increased acidification at the bottom layer. Interestingly, the pH value at the top layers of the biofilms was slightly lower on palatally than on buccally exposed specimens, which may likely be due to anatomic conditions. CONCLUSION: Based on the results of this study, initial intraoral biofilm formation and acidification is almost similar on the bracket material/biomimetic tooth interface when placed buccally or palatally in the upper jaw. As lingual brackets were shown to exhibit reduced WSL formation clinically, future studies should investigate further factors like bracket geometry.

4.
Sci Rep ; 14(1): 3405, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336925

RESUMO

Staphylococcus aureus biofilm-associated infections are a common complication in modern medicine. Due to inherent resilience of biofilms to antibiotics and the rising number of antibiotic-resistant bacterial strains, new treatment options are required. For this purpose, ultrapure, spherical silver-gold-alloy nanoparticles with homogenous elemental distribution were synthesized by laser ablation in liquids and analyzed for their antibacterial activity on different stages of S. aureus biofilm formation as well as for different viability parameters. First, the effect of nanoparticles against planktonic bacteria was tested with metabolic activity measurements. Next, nanoparticles were incubated with differently matured S. aureus biofilms, which were then analyzed by metabolic activity measurements and three dimensional live/dead fluorescent staining to determine biofilm volume and membrane integrity. It could be shown that AgAu NPs exhibit antibacterial properties against planktonic bacteria but also against early-stage and even mature biofilms, with a complete diffusion through the biofilm matrix. Furthermore, AgAu NPs primarily targeted metabolic activity, to a smaller extend membrane integrity, but not the biofilm volume. Additional molecular analyses using qRT-PCR confirmed the influence on different metabolic pathways, like glycolysis, stress response and biofilm formation. As this shows clear similarities to the mechanism of pure silver ions, the results strengthen silver ions to be the major antibacterial agent of the synthesized nanoparticles. In summary, the results of this study provide initial evidence of promising anti-biofilm characteristics of silver-gold-alloy nanoparticles and support the importance of further translation-oriented analyses in the future.


Assuntos
Nanopartículas Metálicas , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/fisiologia , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes , Infecções Estafilocócicas/microbiologia , Plâncton , Lasers , Ouro/farmacologia , Íons , Ligas , Testes de Sensibilidade Microbiana
5.
Bioengineering (Basel) ; 9(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36290534

RESUMO

Bacterial adhesion to dental implants is the onset for the development of pathological biofilms. Reliable characterization of this initial process is the basis towards the development of anti-biofilm strategies. In the present study, single-cell force spectroscopy (SCFS), by means of an atomic force microscope connected to a microfluidic pressure control system (FluidFM), was used to comparably measure adhesion forces of different oral bacteria within a similar experimental setup to the common implant material titanium. The bacteria selected belong to different ecological niches in oral biofilms: the commensal pioneers Streptococcus oralis and Actinomyces naeslundii; secondary colonizer Veillonella dispar; and the late colonizing pathogens Porphyromonas gingivalis as well as fimbriated and non-fimbriated Aggregatibacter actinomycetemcomitans. The results showed highest values for early colonizing pioneer species, strengthening the link between adhesion forces and bacteria's role in oral biofilm development. Additionally, the correlation between biophysical cellular characteristics and SCFS results across species was analyzed. Here, distinct correlations between electrostatically driven maximum adhesion force, bacterial surface elasticity and surface charge as well as single-molecule attachment points, stretching capability and metabolic activity, could be identified. Therefore, this study provides a step towards the detailed understanding of oral bacteria initial adhesion and could support the development of infection-resistant implant materials in future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...