Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 90(7): 4603-4610, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29516721

RESUMO

This paper reports the chemical identity and mechanism of action and formation of a cell growth inhibitory compound leached from some single-use Erlenmeyer polycarbonate shaker flasks under routine cell culture conditions. Single-use cell culture vessels have been increasingly used for the production of biopharmaceuticals; however, they often suffer from issues associated with leachables that may interfere with cell growth and protein stability. Here, high-performance liquid-chromatography preparations and cell proliferation assays led to identification of a compound from the water extracts of some polycarbonate flasks, which exhibited subline- and seeding density-dependent growth inhibition of CHO cells in suspension culture. Mass spectroscopy, nuclear magnetic resonance spectroscopy, and chemical synthesis confirmed that this compound is 3,5-dinitro-bisphenol A. Cell cycle analysis suggests that 3,5-dinitro-bisphenol A arrests CHO-S cells at the G1/Go phase. Dynamic mass redistribution assays showed that 3,5-dinitro-bisphenol A is a weak GPR35 agonist. Analysis of the flask manufacturing process suggests that 3,5-dinitro-bisphenol A is formed via the combination of molding process with γ-sterilization. This is the first report of a cell culture/assay interfering leachable compound that is formed through γ-irradiation-mediated nitric oxide free radical reaction.


Assuntos
Compostos Benzidrílicos/análise , Compostos Benzidrílicos/farmacologia , Fenóis/análise , Fenóis/farmacologia , Cimento de Policarboxilato/química , Cimento de Policarboxilato/farmacologia , Animais , Compostos Benzidrílicos/síntese química , Células CHO , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Estrutura Molecular , Fenóis/síntese química , Relação Estrutura-Atividade
2.
PLoS One ; 9(3): e92120, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24638103

RESUMO

Human mesenchymal stem cells (hMSCs) present an attractive target for cell therapy given their wide availability, immunomodulatory properties, and multipotent nature for differentiation into chondrocytes, osteocytes, and adipocytes. With the progression of hMSC clinical studies, there is an increasing demand for development of technologies that enable efficient cell scale-up into clinically relevant quantities. Commercial scale manufacturing of hMSCs will require a large surface area which is not cost effective with available two-dimensional culture vessels. Recent studies showed that microcarriers provide a three-dimensional culture environment suitable for hMSC expansion. Traditionally, biological coatings and/or serum-containing medium are required to facilitate hMSC attachment and expansion in dynamic conditions. These limitations may hinder the use of microcarriers as a scale-up technology for hMSC therapeutics, where cell products, and therefore patient safety, are more controlled with the use of xeno-free, defined culture conditions. Here we report the long term culture of hMSCs on novel synthetic Synthemax II microcarriers in two different xeno-free media. Cells were maintained over 40 days on sterile, ready-to-use microcarriers in spinner flasks with programmed agitation. hMSC expansion was obtained by addition of fresh beads without the need for enzymatic dissociation. We achieved a cumulative cell expansion of >10,000 fold, and cells retained normal hMSC phenotype, karyotype, and tri-lineage differentiation potential. To our knowledge, this report is the first example of long term culture of hMSCs on synthetic microcarriers in xeno-free, defined conditions.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Microesferas , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Cariótipo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Fatores de Tempo
3.
PLoS One ; 8(8): e70263, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940553

RESUMO

Human mesenchymal stem cells (HMSCS) possess three properties of great interest for the development of cell therapies and tissue engineering: multilineage differentiation, immunomodulation, and production of trophic factors. Efficient ex vivo expansion of hMSCs is a challenging requirement for large scale production of clinical grade cells. Low-cost, robust, scalable culture methods using chemically defined materials need to be developed to address this need. This study describes the use of a xeno-free synthetic peptide acrylate surface, the Corning® Synthemax® Surface, for culture of hMSCs in serum-free, defined medium. Cell performance on the Corning Synthemax Surface was compared to cells cultured on biological extracellular matrix (ECM) coatings in xeno-free defined medium and in traditional conditions on tissue culture treated (TCT) plastic in fetal bovine serum (FBS) supplemented medium. Our results show successful maintenance of hMSCs on Corning Synthemax Surface for eight passages, with cell expansion rate comparable to cells cultured on ECM and significantly higher than for cells in TCT/FBS condition. Importantly, on the Corning Synthemax Surface, cells maintained elongated, spindle-like morphology, typical hMSC marker profile and in vitro multilineage differentiation potential. We believe the Corning Synthemax Surface, in combination with defined media, provides a complete synthetic, xeno-free, cell culture system for scalable production of hMSCs.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/fisiologia , Proliferação de Células , Humanos
4.
Nat Biotechnol ; 28(6): 606-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20512120

RESUMO

Human embryonic stem cells (hESCs) have two properties of interest for the development of cell therapies: self-renewal and the potential to differentiate into all major lineages of somatic cells in the human body. Widespread clinical application of hESC-derived cells will require culture methods that are low-cost, robust, scalable and use chemically defined raw materials. Here we describe synthetic peptide-acrylate surfaces (PAS) that support self-renewal of hESCs in chemically defined, xeno-free medium. H1 and H7 hESCs were successfully maintained on PAS for over ten passages. Cell morphology and phenotypic marker expression were similar for cells cultured on PAS or Matrigel. Cells on PAS retained normal karyotype and pluripotency and were able to differentiate to functional cardiomyocytes on PAS. Finally, PAS were scaled up to large culture-vessel formats. Synthetic, xeno-free, scalable surfaces that support the self-renewal and differentiation of hESCs will be useful for both research purposes and development of cell therapies.


Assuntos
Acrilatos/farmacologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Miócitos Cardíacos/citologia , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Dados de Sequência Molecular , Miócitos Cardíacos/efeitos dos fármacos , Peptídeos/química , Propriedades de Superfície/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...