Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(13): 5071-5077, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513052

RESUMO

Introduction of a dielectric material in a nuclear magnetic resonance (NMR) probe head modifies the frequency response of the probe circuit, a phenomenon revealed by detuning of the probe. For NMR spectroscopy, this detuning is corrected for by tuning and matching the probe head prior to the NMR measurement. The magnitude of the probe detuning, "the dielectric shift", provides direct access to the dielectric properties of the sample, enabling NMR spectrometers to simultaneously perform both dielectric and NMR spectroscopy. By measuring sample dielectric permittivity as a function of frequency, dielectric permittivity spectroscopy can be performed using the new methodology. As a proof of concept, this was evaluated on methanol, ethanol, 1-propanol, 1-pentanol, and 1-octanol using a commercial cross-polarization magic angle spinning (CPMAS) NMR probe head. The results accurately match the literature data collected by standard dielectric spectroscopy techniques. Subsequently, the method was also applied to investigate the solvent-surface interactions of water confined in the micropores of an MFI-type, hydrophilic zeolite with a Si/Al ratio of 11.5. In the micropores, water adsorbs to BroÌ·nsted acid sites and defect sites, resulting in a drastically decreased dielectric permittivity of the nanoconfined water. Theoretical background for the new methodology is provided using an effective electric circuit model of a CPMAS probe head with a solenoid coil, describing the detuning resulting from the insertion of dielectric samples in the probe head.

2.
Anal Chem ; 95(46): 16936-16942, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37931115

RESUMO

High-pressure nuclear magnetic resonance (NMR) spectroscopy finds remarkable applications in catalysis, protein biochemistry and biophysics, analytical chemistry, material science, energy, and environmental control but requires expensive probe heads and/or sample cells. This contribution describes the design, construction, and testing of a low-cost 5 mm NMR tube suitable for high-pressure NMR measurements of up to 30 MPa. The sample cell comprises a standard, 5 mm single-crystal sapphire tube that has been fitted to a section of a relatively inexpensive polyether ether ketone (PEEK) HPLC column. PEEK HPLC tubing and connectors enable integration with a gas rig or a standard HPLC pump located outside the stray field of the magnet. The cell is compatible with any 5 mm static NMR probe head, exhibits almost zero background in NMR experiments, and is compatible with any liquid, gas, temperature, or pressure range encountered in HPLC experimentation. A specifically designed transport case enables the safe handling of the pressurized tube outside the probe head. The performance of the setup was evaluated using in situ high-field NMR spectroscopy and MRI performed during the formation of bulk and nanoconfined clathrate hydrates occluding methane, ethane, and hydrogen.

3.
Mater Horiz ; 10(9): 3702-3711, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37401863

RESUMO

Upon liquid phase adsorption of C1-C5 primary alcohols on high silica MFI zeolites (Si/Al = 11.5-140), the concentration of adsorbed molecules largely exceeds the concentration of traditional adsorption sites: Brønsted acid and defect sites. Combining quantitative in situ1H MAS NMR, qualitative multinuclear NMR and IR spectroscopy, hydrogen bonding of the alcohol function to oxygen atoms of the zeolite siloxane bridges (Si-O-Si) was shown to drive the additional adsorption. This mechanism co-exists with chemi- and physi-sorption on Brønsted acid and defect sites and does not exclude cooperative effects from dispersive interactions.

4.
Anal Chem ; 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36579853

RESUMO

Porous silica is used as a drug delivery agent to improve the bioavailability of sparsely soluble compounds. In this approach, the active pharmaceutical ingredient (API) is commonly loaded into the porous silica by incipient wetness impregnation using organic solvents. Subsequent solvent elimination is critical as the residual solvent concentration cannot exceed threshold values set by health and safety regulations (e.g., EMA/CHMP/ICH/82260/2006). For dichloromethane and methanol, for example, residual concentrations must be below 600 and 3000 ppm, respectively. Today, EU and USA Pharmacopoeias recommend tedious procedures for residual solvent quantification, requiring extraction of the solvent and subsequent quantification using capillary gas chromatography with static headspace sampling (sHS-GC). This work presents a new method based on the combination of standard addition and absolute quantification using magic-angle spinning nuclear magnetic resonance spectroscopy (MAS qNMR). The methodology was originally developed for absolute quantification of water in zeolites and has now been validated for quantification of residual solvent in drug formations using mesoporous silica loaded with ibuprofen dissolved in DCM and MeOH as test samples. Interestingly, formulations prepared using as-received or predried mesoporous silica contained 5465 versus 484.9 ppm DCM, respectively. This implies that the initial water content of the silica carrier can impact the residual solvent concentration in drug-loaded materials. This observation could provide new options to minimize the occurrence of these undesired solvents in the final formulation.

5.
Anal Chem ; 92(19): 13004-13009, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32830954

RESUMO

A protocol for the detection of trace amounts of quartz in amorphous silica gels by NMR spectroscopy was developed and tested on commercially available samples. Using natural abundance 29Si MAS NMR spectroscopy with CPMG acquisition and standard addition of crystalline quartz, quantitative detection of quartz concentrations down to 0.1% wt. was achieved. CPMG permitted to suppress the amorphous silica-derived signal, benefitting from the extremely long T2 relaxation time of quartz in 29Si and hence dramatically increasing the sensitivity. Dedicated post-processing exploiting the known CPMG spikelet frequencies allowed to probe the near-absence of quartz in commercial, 100% silica samples, enabling assessment of conformity of unknown samples to EU legislation (REACH).

6.
Anal Chem ; 89(13): 6940-6943, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28627885

RESUMO

Zeolites are microporous materials driving industrial scale adsorption, ion exchange, and catalytic processes. Their water content dramatically impacts their properties, but its quantification with Karl Fisher titration or thermal gravimetric analysis is problematic. When standard addition of water is combined with 1H magic angle spinning (MAS) NMR detection, absolute quantification of water in microporous materials becomes possible. The method was demonstrated on five different, commercially available zeolites.

7.
Environ Sci Technol ; 49(3): 1729-37, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25569300

RESUMO

Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.


Assuntos
Cátions/química , Zeolitas/química , Resinas de Troca de Cátion/química , Césio/química , Concentração de Íons de Hidrogênio , Águas Salinas/química , Soluções , Água/química
8.
Environ Sci Technol ; 44(17): 6649-55, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20704178

RESUMO

The geochemical fate of selenium is of key importance for today's society due to its role as a highly toxic essential micronutrient and as a significant component of high level radioactive waste (HLRW) originating from the operation of nuclear reactors. Understanding and prediction of the long-term behavior of Se in natural environments requires identification of the in situ speciation of selenium. This article describes an XAS-based investigation into the solid phase speciation of Se upon interaction of Se(IV) with Boom Clay, a reducing, complex sediment selected as model host rock for clay-based deep geological disposal of HLRW in Belgium and Europe. Using a combination of long-term batch sorption experiments, linear combination XANES analysis and ITFA-based EXAFS analysis allowed for the first time to identify Se0 as the dominant solid phase speciation of Se in Boom Clay systems equilibrated with Se(IV).


Assuntos
Silicatos de Alumínio/química , Selênio/química , Espectroscopia por Absorção de Raios X , Argila , Análise Fatorial , Oxirredução , Soluções , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...