Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 12(10): 920-35, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22420570

RESUMO

The adjustment of multiple criteria in hit-to-lead identification and lead optimization is a major advance in drug discovery. Thus, the development of approaches able to handle additional criteria for the early simultaneous treatment of the most important properties determining the pharmaceutical profile of a drug candidate is an emergent issue in this area. In this paper, we review a desirability-based multi-objective QSAR method allowing the joint handling of multiple properties of interest in drug discovery: the MOOP-DESIRE methodology. This methodology adapts desirability theory concepts allowing the holistic modeling of the many and conflicting biological properties determining the therapeutic utility of a drug candidate. Here we survey their suitability for key tasks involving the use of chemoinformatics methods in medicinal chemistry and drug discovery.


Assuntos
Descoberta de Drogas/métodos , Relação Quantitativa Estrutura-Atividade , Algoritmos , Animais , Humanos , Modelos Biológicos
2.
J Comb Chem ; 10(6): 897-913, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18855460

RESUMO

Up to now, very few applications of multiobjective optimization (MOOP) techniques to quantitative structure-activity relationship (QSAR) studies have been reported in the literature. However, none of them report the optimization of objectives related directly to the final pharmaceutical profile of a drug. In this paper, a MOOP method based on Derringer's desirability function that allows conducting global QSAR studies, simultaneously considering the potency, bioavailability, and safety of a set of drug candidates, is introduced. The results of the desirability-based MOOP (the levels of the predictor variables concurrently producing the best possible compromise between the properties determining an optimal drug candidate) are used for the implementation of a ranking method that is also based on the application of desirability functions. This method allows ranking drug candidates with unknown pharmaceutical properties from combinatorial libraries according to the degree of similarity with the previously determined optimal candidate. Application of this method will make it possible to filter the most promising drug candidates of a library (the best-ranked candidates), which should have the best pharmaceutical profile (the best compromise between potency, safety and bioavailability). In addition, a validation method of the ranking process, as well as a quantitative measure of the quality of a ranking, the ranking quality index (Psi), is proposed. The usefulness of the desirability-based methods of MOOP and ranking is demonstrated by its application to a library of 95 fluoroquinolones, reporting their gram-negative antibacterial activity and mammalian cell cytotoxicity. Finally, the combined use of the desirability-based methods of MOOP and ranking proposed here seems to be a valuable tool for rational drug discovery and development.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas , Algoritmos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Combinatória , Coleta de Dados , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fluoroquinolonas , Bactérias Gram-Negativas/efeitos dos fármacos
3.
Chem Res Toxicol ; 21(3): 619-32, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18257557

RESUMO

Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome-(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard task. The search for a model based on general MS patterns becomes a more realistic choice. In our previous work ( González-Díaz, H. , et al. Chem. Res. Toxicol. 2003, 16, 1318- 1327 ), we introduced the molecular structure information indices called 3D-Markovian electronic delocalization entropies (3D-MEDNEs). In this previous work, quantitative structure-toxicity relationship (QSTR) techniques allowed us to link 3D-MEDNEs with blood toxicological properties of drugs. In this second part, we extend 3D-MEDNEs to numerically encode biologically relevant information present in MS of the serum proteome for the first time. Using the same idea behind QSTR techniques, we can seek now by analogy a quantitative proteome-toxicity relationship (QPTR). The new QPTR models link MS 3D-MEDNEs with drug-induced toxicological properties from blood proteome information. We first generalized Randic's spiral graph and lattice networks of protein sequences to represent the MS of 62 serum proteome samples with more than 370 100 intensity ( I i ) signals with m/ z bandwidth above 700-12000 each. Next, we calculated the 3D-MEDNEs for each MS using the software MARCH-INSIDE. After that, we developed several QPTR models using different machine learning and MS representation algorithms to classify samples as control or positive Pro-EDICToRs samples. The best QPTR proposed showed accuracy values ranging from 83.8% to 87.1% and leave-one-out (LOO) predictive ability of 77.4-85.5%. This work demonstrated that the idea behind classic drug QSTR models may be extended to construct QPTRs with proteome MS data.


Assuntos
Proteoma/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Toxicologia/métodos , Algoritmos , Inteligência Artificial , Simulação por Computador , Entropia , Biblioteca Gênica , Cadeias de Markov , Espectrometria de Massas , Modelos Estatísticos
4.
J Comput Chem ; 28(11): 1909-23, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17405109

RESUMO

Predicting tissue and environmental distribution of chemicals is of major importance for environmental and life sciences. Most of the molecular descriptors used in computational prediction of chemicals partition behavior consider molecular structure but ignore the nature of the partition system. Consequently, computational models derived up-to-date are restricted to the specific system under study. Here, a free energy-based descriptor (DeltaG(k)) is introduced, which circumvent this problem. Based on DeltaG(k), we developed for the first time a single linear classification model to predict the partition behavior of a broad number of structurally diverse drugs and other chemicals (1300) for 38 different partition systems of biological and environmental significance. The model presented training/predicting set accuracies of 91.79/88.92%. Parametrical assumptions were checked. Desirability analysis was used to explore the levels of the predictors that produce the most desirable partition properties. Finally, inversion of the partition direction for each one of the 38 partition systems evidences that our models correctly classified 89.08% of compounds with an uncertainty of only +/-0.17% independently of the direction of the partition process used to seek the model. Other 10 different classification models (linear, neural networks, and genetic algorithms) were also tested for the same purposes. None of these computational models favorably compare with respect to the linear model indicating that our approach capture the main aspects that govern chemicals partition in different systems.


Assuntos
Cadeias de Markov , Modelos Químicos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...