Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 77(1): 141-149, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35247155

RESUMO

Gelling ability of a bean protein isolate (BPI) obtained from a naturally low-lectin variety (Phaseolus vulgaris var. Almonga) was analysed. For that purpose differences on gels processing: concentration (14% and 17%), salt addition (0 and 2%), and pH (6.5 -lot A- and 7 -lot B), were studied to obtain suitable colour, mechanical and viscoelastic properties for making appropriate meat and seafood analogues. Gelation at pH 7 at both 14 and 17% BPI concentrations, produced less rigid, more flexible, time-stable and cohesive gel networks. Colour of the resulting gels was white enough to be considered as an adequate base for making plant-based analogues. The content of total galactoside, inositol phosphates and trypsin inhibitors (bioactive compounds) present in one serving (100 g) of these BPI gels were up to 0.80 mg/g, 8.06 mg/g and 239 TIUs, respectively.


Assuntos
Lectinas , Phaseolus , Géis/química , Lectinas/química , Phaseolus/química , Inibidores da Tripsina
2.
Plant Foods Hum Nutr ; 75(4): 642-650, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33097987

RESUMO

Recently, legume protein isolates are increasingly of interest as ingredients for the food industry; however, in spite of their health benefits, there is a limited information about the presence of bioactive compounds in the protein isolates. The objective of this study was to establish the phytochemical composition and selected techno-functional properties of pea and bean flours and their protein isolates obtained applying different drying methods. Regarding proximate composition, bean flour contained higher amounts of total protein (23%) and fat (44%) than pea flour; bean protein isolate (BPI) contained higher total and soluble protein, fat and starch than the pea protein isolate (PPI). Both protein isolates showed a similar emulsifying capacity (around 27%). Emulsion stability and foaming capacity were higher in the PPI (around 36%). Bean flour contained lower amounts of α-galactosides (31.64 mg/g) but a higher trypsin inhibitors content (21.95 TIU/mg) than pea flour. The preparation procedure of the protein isolates affected the bioactive compound content. The PPI showed a reduction of inositol phosphates (13%), galactosides (76%), trypsin inhibitors (90%) and total phenolic compounds (35%) compared to its whole flour. The BPI contained higher amounts of inositol phosphates (137%) and total phenolic compounds (135%) than its flour, while it showed a lower content of galactosides (54%) and a similar amount of trypsin inhibitors. Thus, the bioactive compound content and the functional properties studied indicate that protein isolates can be used as ingredients with added-value in the development of new formulated food products, allowing their increasing use in the food industry.


Assuntos
Fabaceae , Farinha , Pisum sativum , Compostos Fitoquímicos , Inibidores da Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...