Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Oncol Res ; 26(1): 17-22, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31848942

RESUMO

Data on the KIT mutation rate in melanoma in the central European region is missing. Accordingly, in a cohort of 79 BRAF/NRAS double wild type cutaneous melanoma and 17 mucosal melanoma KIT mutation was assessed by Sanger sequencing of exons 9,11,13,17 and 18. In this cutaneous melanoma cohort KIT mutation frequency was found to be 34/79 (43.04%) with a significantly higher rate in acrolentiginous melanoma (ALM) as compared to UV-induced common variants (20/34, 58.8% versus 14/45, 31.1%, p = 0.014). In the double wild type mucosal melanoma cohort the KIT mutation frequency was found to be comparable (41.2%). The actual frequency of KIT mutation in the original 227 patient cutaneous melanoma cohort was 34/227, 14.9%. Exon 11 was the most frequent mutation site (44.7%) followed by exon 9 (21.1%) equally characterizing UV-induced common histotypes and ALM tumors. In mucosal melanoma exon 9 was the most frequently involved exon followed by exon 13 and 17. KIT mutation hotspots were identified in exon 9 (c482/491/492), in exon 11 (c559,c572, c570), in exon 13 (c642), in exon 17 (c822) and in exon 18 (c853). The relatively high KIT mutation rate in cutaneous melanoma in this central-European cohort justifies regular testing of this molecular target in this entity, not only in mucosal variants.


Assuntos
Melanoma/genética , Melanoma/patologia , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Europa (Continente)/epidemiologia , Éxons/genética , Feminino , Frequência do Gene , Humanos , Incidência , Masculino , Melanoma/epidemiologia , Mucosa/patologia , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
2.
BMC Cancer ; 19(1): 853, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31464610

RESUMO

Following publication of the original article [1], the authors reported the family name of the second author was incorrectly published.

3.
BMC Cancer ; 19(1): 786, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391014

RESUMO

BACKGROUND: Data indicate that primary cutaneous melanomas are characterized by clonal heterogeneity associated with oncogenic drivers. Less data are available on the clonal changes occurring during melanoma progression. We therefore wished to analyse these changes in skin melanomas in common sites of visceral metastases as compared to the primary tumor. METHODS: An autopsy cohort of 50 patients with BRAF- and NRAS-mutant cutaneous metastatic melanomas including 139 visceral metastases was analysed for mutant allele fractions (MAF), determined by pyrosequencing and corrected for tumor/normal ratio. MAF levels were also classified as high (> 40%), medium (15-40%) or low (< 15%). RESULTS: Contrary to NRAS mutant cases, in BRAF-mutant melanomas MAFs were found to be significantly increased in visceral metastases compared to the primary due to the significantly higher levels in lung-, adrenal gland-, intestinal- and kidney metastases. The incidence of the three MAF variants in BRAF-mutant primaries was similar, whereas the high MAF cases were found to be increased in metastases. On the other hand, medium MAF levels were more common in case of NRAS-mutant tumors. Only 31.3% of BRAF mutant- and 50% of NRAS mutant cases maintained the MAF profile of the primary in metastasis. In the majority of multiple metastatic tumors, (BRAF:71.8%, NRAS:75%) metastases were relatively homogeneous regarding MAF. However, in 6/32(18.7%) of BRAF mutant cases low MAF primaries switched to high MAF in metastases. In heterogeneous BRAF mutant metastatic cases low to high or high to low MAF conversions occurred in a further 4/32(12.5%) cases in individual metastases as compared to the primary tumors. At lower frequency, in NRAS mutant tumor such changes also observed (2/12,16.7%). CONCLUSION: We provided evidence for the selection of BRAF-mutant melanoma cells during metastatic progression to the lung, intestine, adrenal gland and kidney. Our findings suggest that in visceral metastases of malignant melanoma BRAF- or NRAS-MAFs are rather heterogeneous and cannot be predicted from data of the primary tumor. These data may have clinical significance when using targeted therapies.

4.
Cancer Metastasis Rev ; 35(1): 93-107, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26970965

RESUMO

Malignant melanoma of the skin is the most aggressive human cancer given that a primary tumor a few millimeters in diameter frequently has full metastatic competence. In view of that, revealing the genetic background of this potential may also help to better understand tumor dissemination in general. Genomic analyses have established the molecular classification of melanoma based on the most frequent driver oncogenic mutations (BRAF, NRAS, KIT) and have also revealed a long list of rare events, including mutations and amplifications as well as genetic microheterogeneity. At the moment, it is unclear whether any of these rare events have role in the metastasis initiation process since the major drivers do not have such a role. During lymphatic and hematogenous dissemination, the clonal selection process is evidently reflected by differences in oncogenic drivers in the metastases versus the primary tumor. Clonal selection is also evident during lymphatic progression, though the genetic background of this immunoselection is less clear. Genomic analyses of metastases identified further genetic alterations, some of which may correspond to metastasis maintenance genes. The natural genetic progression of melanoma can be modified by targeted (BRAF or MEK inhibitor) or immunotherapies. Some of the rare events in primary tumors may result in primary resistance, while further new genetic lesions develop during the acquired resistance to both targeted and immunotherapies. Only a few genetic lesions of the primary tumor are constant during natural or therapy-modulated progression. EGFR4 and NMDAR2 mutations, MITF and MET amplifications and PTEN loss can be considered as metastasis drivers. Furthermore, BRAF and MITF amplifications as well as PTEN loss are also responsible for resistance to targeted therapies, whereas NRAS mutation is the only founder genetic lesion showing any association with sensitivity to immunotherapies. Unfortunately, there are hardly any data on the possible organ-specific metastatic drivers in melanoma. These observations suggest that clinical management of melanoma patients must rely on the genetic analysis of the metastatic lesions to be able to monitor progression-associated changes and to personalize therapies.


Assuntos
Carcinogênese , Resistencia a Medicamentos Antineoplásicos/genética , Melanoma/genética , Receptores ErbB/genética , Humanos , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Mutação , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-met/genética , Receptores de N-Metil-D-Aspartato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...