Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 208: 117850, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798423

RESUMO

Mineral scale deposits in water drainage and supply systems are a common and challenging issue, especially by clogging the water flow. The removal of such unwanted deposits is cost intensive arguing for case-specific and sustainable prevention strategies. In the present study, a novel on-site approach to prevent calcium carbonate (CaCO3) scale formation was assessed in two road tunnel drainages: Application of the eco-friendly green inhibitor polyaspartate (PASP) caused (i) a significant inhibition of CaCO3 precipitation, (ii) a more porous or even unconsolidated consistence of the deposits, and (iii) a shift from calcite to the metastable aragonite and vaterite polymorphs. Even relatively low PASP concentrations (1-33 mg/l) can significantly decrease CaCO3 scale deposition, removing up to ∼7 t CaCO3/year at an efficiency up to 84%. Application of PASP for water conditioning should also consider case-specific microbial activity effects, where consumption of PASP, e.g. by Leptothrix ochracea, can limit inhibition effects.


Assuntos
Carbonato de Cálcio , Minerais , Água
2.
Sci Total Environ ; 718: 137140, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32088488

RESUMO

Rapid deposition of chemical sediments, particularly calcium carbonate, is a widespread phenomenon in tunnel constructions, which can significantly disturb water draining. The removal of the scale deposits in the drainage setting is labor and cost intensive. Prediction or prevention of these unwanted scale deposits are challenging and require detailed knowledge on their site-specific source, formation mechanisms and environmental dependencies. This case study combines a mineralogical, (micro)structural, isotopic, microbiological, and hydrochemical approach to understand the formation of scale deposits in an Austrian motorway tunnel. Chemical and isotopic results revealed that all investigated solutions originate from a distinct local aquifer. High pH (11), indicative high alkaline element concentrations (Na 26 mg/l; K 67 mg/l), originated from concrete leaching, and a strong supersaturation in respect to calcite (SI > 1) are representative for the environmental setting of scaling type 1. This type is characterized by the formation of calcite, aragonite, and rarely documented dypingite (Mg5(CO3)4(OH)2*5H2O), and yields in a highly porous material showing minor indications of microbial presence. In contrast, scale deposits of type 2 are strongly microbially influenced, yielding dense and layered mineral deposits, typically consisting of calcite. The corresponding aqueous solution revealed elevated Mg concentration (38 mg/l) and a high molar Mg/Ca ratio (0.8). Scale deposits containing distinct aragonite precipitates next to calcite, mostly growing in pore spaces of the scale fabric, are accounted as type 3. Therein, dypingite is always growing on top of aragonite needles, indicative for prior CaCO3 precipitation. The composition of corresponding solutions shows the highest Mg/Ca ratio (1.1). Scale type 4 is characterized as a compact deposit consisting entirely of calcite. Its corresponding solution exhibits a molar Mg/Ca ratio of 0.6. From the obtained data sets a conceptual model was developed describing the distinct operative and (micro)environmental conditions responsible for the distinct diversity of scale deposits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...