Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37623789

RESUMO

Technological advances in biosensing offer extraordinary opportunities to transfer technologies from a laboratory setting to clinical point-of-care applications. Recent developments in the field have focused on electrochemical and optical biosensing platforms. Unfortunately, these platforms offer relatively poor sensitivity for most of the clinically relevant targets that can be measured on the skin. In addition, the non-specific adsorption of biomolecules (biofouling) has proven to be a limiting factor compromising the longevity and performance of these detection systems. Research from our laboratory seeks to capitalize on analyte selective properties of biomaterials to achieve enhanced analyte adsorption, enrichment, and detection. Our goal is to develop a functional membrane integrated into a microfluidic sampling interface and an electrochemical sensing unit. The membrane was manufactured from a blend of Polycaprolactone (PCL) and Polyethylene oxide (PEO) through a solvent casting evaporation method. A microfluidic flow cell was developed with a micropore array that allows liquid to exit from all pores simultaneously, thereby imitating human perspiration. The electrochemical sensing unit consisted of planar gold electrodes for the monitoring of nonspecific adsorption of proteins utilizing Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The solvent casting evaporation technique proved to be an effective method to produce membranes with the desired physical properties (surface properties and wettability profile) and a highly porous and interconnected structure. Permeability data from the membrane sandwiched in the flow cell showed excellent permeation and media transfer efficiency with uniform pore activation for both active and passive sweat rates. Biofouling experiments exhibited a decrease in the extent of biofouling of electrodes protected with the PCL/PEO membrane, corroborating the capacity of our material to mitigate the effects of biofouling.

2.
Stem Cell Res Ther ; 14(1): 208, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605275

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) secrete a diversity of factors with broad therapeutic potential, yet current culture methods limit potency outcomes. In this study, we used topographical cues on polystyrene films to investigate their impact on the secretory profile and potency of bone marrow-derived MSCs (hBM-MSCs). hBM-MSCs from four donors were cultured on topographic substrates depicting defined roughness, curvature, grooves and various levels of wettability. METHODS: The topographical PS-based array was developed using razor printing, polishing and plasma treatment methods. hBM-MSCs from four donors were purchased from RoosterBio and used in co-culture with peripheral blood mononuclear cells (PBMCs) from Cell Applications Inc. in an immunopotency assay to measure immunosuppressive capacity. Cells were cultured on low serum (2%) for 24-48 h prior to analysis. Image-based analysis was used for cell quantification and morphology assessment. Metabolic activity of BM-hMSCs was measured as the mitochondrial oxygen consumption rate using an extracellular flux analyzer. Conditioned media samples of BM-hMSCs were used to quantify secreted factors, and the data were analyzed using R statistics. Enriched bioprocesses were identify using the Gene Ontology tool enrichGO from the clusterprofiler. One-way and two-way ANOVAs were carried out to identify significant changes between the conditions. Results were deemed statistically significant for combined P < 0.05 for at least three independent experiments. RESULTS: Cell viability was not significantly affected in the topographical substrates, and cell elongation was enhanced at least twofold in microgrooves and surfaces with a low contact angle. Increased cell elongation correlated with a metabolic shift from oxidative phosphorylation to a glycolytic state which is indicative of a high-energy state. Differential protein expression and gene ontology analyses identified bioprocesses enriched across donors associated with immune modulation and tissue regeneration. The growth of peripheral blood mononuclear cells (PBMCs) was suppressed in hBM-MSCs co-cultures, confirming enhanced immunosuppressive potency. YAP/TAZ levels were found to be reduced on these topographies confirming a mechanosensing effect on cells and suggesting a potential role in the immunomodulatory function of hMSCs. CONCLUSIONS: This work demonstrates the potential of topographical cues as a culture strategy to improve the secretory capacity and enrich for an immunomodulatory phenotype in hBM-MSCs.


Assuntos
Leucócitos Mononucleares , Células-Tronco Mesenquimais , Humanos , Transporte Biológico , Análise de Variância , Bioensaio
3.
Front Cell Dev Biol ; 11: 1124250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968199

RESUMO

Introduction: Cancer stem cells (CSC), a major culprit of drug-resistant phenotypes and tumor relapse, represent less than 2 % of the bulk of TNBC cells, making them difficult to isolate, study, and thus, limiting our understanding of the pathogenesis of the disease. Current methods for CSC enrichment, such as 3D spheroid culture, genetic modification, and stem cell conditioning, are time consuming, expensive, and unsuitable for high-throughput assays. One way to address these limitations is to use topographical stimuli to enhance CSC populations in planar culture. Physical cues in the breast tumor microenvironment can influence cell behavior through changes in the mechanical properties of the extracellular matrix (ECM). In this study, we used topographical cues on polystyrene films to investigate their effect on the proteome and stemness of standard TNBC cell lines. Methods: The topographical polystyrene-based array was generated using razor printing and polishing methods. Proteome data were analyzed and enriched bioprocesses were identified using R software. Stemness was assessed measuring CD44, CD24 and ALDH markers using flow cytometry, immunofluorescence, detection assays, and further validated with mammosphere assay. EGF/EGFR expression and activity was evaluated using enzyme-linked immunosorbent assay (ELISA), immunofluorescence and antibody membrane array. A dose-response assay was performed to further investigate the effect of surface topography on the sensitivity of cells to the EGFR inhibitor. Results: Surface roughness enriched the CSC population and modulated epidermal growth factor receptor (EGFR) signaling activity in TNBC cells. Enhanced proliferation of MDA-MB-468 cells in roughness correlated with upregulation of the epidermal growth factor (EGF) ligand, which in turn corresponded with a 3-fold increase in the expression of EGFR and a 42% increase in its phosphorylation compared to standard smooth culture surfaces. The results also demonstrated that phenotypic changes associated with topographical (roughness) stimuli significantly decreased the drug sensitivity to the EGFR inhibitor gefitinib. In addition, the proportion of CD44+/CD24-/ALDH+ was enhanced on surface roughness in both MDA-MB-231 and MDA-MB-468 cell lines. We also demonstrated that YAP/TAZ activation decreased in a roughness-dependent manner, confirming the mechanosensing effect of the topographies on the oncogenic activity of the cells. Discussion: Overall, this study demonstrates the potential of surface roughness as a culture strategy to influence oncogenic activity in TNBC cells and enrich CSC populations in planar cultures. Such a culture strategy may benefit high-throughput screening studies seeking to identify compounds with broader tumor efficacy.

4.
ACS Biomater Sci Eng ; 7(6): 2430-2443, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33688723

RESUMO

The fibril orientation of type I collagen has been shown to contribute to tumor invasion and metabolic changes. Yet, there is limited information about its impact on tumor cells' behavior in a restrictive growth environment. Restrictive growth environments are generated by the inhibition of a proliferation stimulus during therapy or as an inflammatory response to suppress tumor expansion. In this study, the impact of a type I collagen matrix orientation and fibrous architecture on cell proliferation and response to estrogen receptor (ER) therapy were examined using estrogen-dependent breast tumor cells (MCF-7 and T-47D) cultured in a hormone-restricted environment. The use of hormone-free culture media, as well as pharmacological inhibitors of ER, Tamoxifen, and Fulvestrant, were investigated as hormone restrictive conditions. Examination of cultures at 72 h showed that tumor cell proliferation was significantly stimulated (1.8-fold) in the absence of hormones on collagen fibrous substrates, but not on polycaprolactone fibrous substrates of equivalent orientation. ER inhibitors did not suppress cell proliferation on collagen fibrous substrates. The examination of reporter cells for ER signaling showed a lack of activity, thus confirming a shift toward an ER-independent proliferation mechanism. Examination of two selective inhibitors of α2ß1 and α1ß1 integrins showed that cell proliferation is suppressed in the presence of the α2ß1 integrin inhibitor only, thereby indicating that the observed changes in tumor cell behavior are caused by a combination of integrin signaling and/or an intrinsic structural motif that is uniquely present in the collagen fibrils. Adjacent coculture studies on collagen substrates showed that tumor cells on collagen can stimulate the proliferation of cells on tissue culture plastic through soluble factors. The magnitude of this effect correlated with the increased surface anisotropy of the substrate. This sensing in fibril orientation was further supported by a differential expression pattern of secreted proteins that were identified on random and aligned orientation substrates. Overall, this study shows a new role for electrospun collagen I fibrous substrates by supporting a shift toward an ER-independent tumor cell proliferation mechanism in ER+ breast tumor cells.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Linhagem Celular Tumoral , Proliferação de Células , Colágeno Tipo I , Feminino , Fulvestranto/farmacologia , Humanos , Receptores de Estrogênio/genética , Microambiente Tumoral
5.
J Biomed Mater Res A ; 109(6): 951-965, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32786025

RESUMO

The therapeutic potential of human mesenchymal stromal cells (h-MSC) is dependent on the viability and secretory capacity of cells both modulated by the culture environment. Our previous studies introduced heparin and collagen I (HEP/COL) alternating stacked layers as a potential substrate to enhance the secretion of immunosuppressive factors of h-MSCs. Herein, we examined the impact of HEP/COL multilayers on the growth, morphology, and secretome of bone marrow and adipose-derived h-MSCs. The physicochemical properties and stability of the HEP/COL coatings were confirmed at 0 and 30 days. Cell growth was examined using cell culture media supplemented with 2 and 10% serum for 5 days. Results showed that HEP/COL multilayers supported h-MSC growth in 2% serum at levels equivalent to 10% serum. COL and HEP as single component coatings had limited impact on cell growth. Senescent studies performed over three sequential passages showed that HEP/COL multilayers did not impair the replicative capacity of h-MSCs. Examination of 27 cytokines showed significant enhancements in eight factors, including intracellular indoleamine 2, 3-dioxygenase, on HEP/COL multilayers when stimulated with interferon-gamma (IFN-γ). Image-based analysis of cell micrographs showed that serum influences h-MSC morphology; however, HEP-ended multilayers generated distinct morphological changes in response to IFN-γ, suggesting an optical detectable assessment of h-MSCs immunosuppressive potency. This study supports HEP/COL multilayers as a culture substrate for undifferentiated h-MSCs cultured in reduced serum conditions.


Assuntos
Anticoagulantes/química , Materiais Revestidos Biocompatíveis , Colágeno/química , Heparina/química , Interferon gama/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Secretoma , Adipócitos , Animais , Células da Medula Óssea , Bovinos , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunossupressores/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura
6.
Acta Biomater ; 121: 339-348, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271355

RESUMO

Silicones (i.e. crosslinked poly(dimethylsiloxane), PDMS) are commonly used material for microfluidic device fabrication. Nonetheless, due to the uncontrollable absorption of small hydrophobic molecules (<1 kDa) into the bulk, its applicability to cell-based drug assays and sensing applications has been limited. Here, we demonstrate the use of substrates made of silicones bulk modified with a poly(ethylene oxide) silane amphiphile (PEO-SA) to reduce hydrophobic small molecule sequestration for cell-based assays. Modified silicone substrates were generated with concentrations of 2 wt.%, 9 wt.% and, 14 wt.% PEO-SA. Incorporation of PEO-SA into the silicone bulk was assessed by FTIR analysis in addition to water contact angle analysis to evaluate surface hydrophobicity. Cell toxicity, absorption of small hydrophobic drugs, and cell response to hydrophobic molecules were also evaluated. Results showed that the incorporation of the PEO-SA into the silicone led to a reduction in water contact angle from 114° to as low as 16° that was stable for at least three months. The modified silicones showed viability values above 85% for NIH-3T3, MCF7, MDA-MB-468, and MDA-MB-231 cell lines. A drug response assay using tamoxifen and the MCF7 cell line showed full recovery of cell toxicity response when exposed to PDMS modified with 9 wt.% or 14 wt.% PEO-SA compared to tissue culture plastic. Therefore, our study supports the use of PEO-SA at concentrations of 9 wt.% or higher for enhanced surface wettability and reduced absorption of small hydrophobic molecules in PDMS-based platforms.


Assuntos
Dimetilpolisiloxanos , Silicones , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis , Água , Molhabilidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-33693439

RESUMO

Cells can respond to different topographical cues in their natural microenvironment. Hence, scientists have employed microfabrication techniques and materials to generate culture substrates containing topographies for cell-based assays. However, one of the limitations of custom topographical platforms is the lack of adoption by the broad research community. These techniques and materials have high costs, require high technical expertise, and can leach components that may introduce artifacts. In this study, we developed an array of culture surfaces on polystyrene using razor printing and sanding methods to examine the impact of microscale topographies on cell behavior. The proposed technology consists of culture substrates of defined roughness, depth, and curvature on polystyrene films bound to the bottom of a culture well using double-sided medical-grade tape. Human monocytes and adult mesenchymal stem cells (hMSCs) were used as test beds to demonstrate the applicability of the array for cell-based assays. An increase in cell elongation and Arg-1 expression was detected in macrophages cultured in grooves and on rough substrates as compared to flat surfaces. Also, substrates with enhanced roughness stimulated the proliferation of hMSCs. This effect correlated with the secretion of proteins involved in cell proliferation and the downregulation of those associated with cell differentiation. Our results showed that the polystyrene topography sticker array supports cellular changes guided by microscale surface roughness and geometries. Consequently, microscale surface topographies on polished and razor-printed polystyrene films could leverage the endogenous mechanisms of cells to stimulate cellular changes at the functional level for cell-based assays.

8.
Ann Biomed Eng ; 48(2): 519-535, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31705365

RESUMO

Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.


Assuntos
Células-Tronco Adultas/metabolismo , Reatores Biológicos , Técnicas de Cultura de Células , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Adultas/citologia , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/citologia
9.
Cancers (Basel) ; 11(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658643

RESUMO

The paracrine interaction between tumor cells and adjacent stroma has been associated with the oncogenic activity of the Hedgehog (Hh) pathway in triple-negative breast tumors. The present study developed a model of paracrine Hh signaling and examined the impact of mesenchymal cell sources and culture modalities in the oncogenicity of the Hh pathway in breast tumor cells. Studies consisted of tumor cell monocultures and co-cultures with cancer-associated and normal fibroblasts, tumor cells that undergo epithelial-mesenchymal transition (EMT), or adipose-derived mesenchymal stem cells (ADMSCs). Hh ligand and pathway inhibitors, GANT61 and NVP-LDE225 (NVP), were evaluated in both cell cultures and a mouse xenograft model. Results in monocultures show that tumor cell viability and Hh transcriptional activity were not affected by Hh inhibitors. In co-cultures, down-regulation of GLI1, SMO, and PTCH1 in the stroma correlated with reduced tumor growth rates in xenografted tumors and cell cultures, confirming a paracrine interaction. Fibroblasts and EMT cells supported Hh transcriptional activity and enhanced tumor cell growth. Mixed and adjacent culture modalities indicate that tumor growth is supported via fibroblast-secreted soluble factors, whereas enriched tumor stemness requires close proximity between tumor and fibroblasts. Overall this study provides a tumor-mesenchymal model of Hh signaling and highlights the therapeutic value of mesenchymal cells in the oncogenic activity of the Hh pathway.

10.
Lab Chip ; 18(20): 3184-3195, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30204194

RESUMO

The study of multi-cell-type (MCT) interactions has the potential to significantly impact our understanding of tissue and disease biology. Such studies require innovative culture tools for unraveling the contributions of each cell type. Micro- and macro-scale platforms for MCT culture each have different advantages and disadvantages owing to their widely different capabilities, availability, and ease-of-use. However, as evidenced in the literature, there are very few examples of MCT studies and culture platforms, suggesting both biological and technical barriers. We have developed an open multi-culture platform to promote more rapid progress by integrating advantages of both micro- and macro-scale culture devices. The proposed open multi-culture platform addresses technical barriers by allowing easy customization, independent control of basic physical culture parameters, and incorporation of multiple culture modalities (e.g., 2D, 3D, transwell, and spheroid). The design also permits the user to obtain independent endpoints for each culture region. We demonstrate use of the platform in two example studies where we evaluated how cell ratio and cell types influence the response of triple negative breast cancer cells to heat damage and Hedgehog signaling. We also show that the platform can improve soluble factor transport between cell types compared to compartmentalized macro- and micro-scale alternatives. Last, we examine current and future challenges of the platform. We envision simple, yet flexible and customizable, platforms such as this will be important for advancing in vitro study of tissue and tumor biology.


Assuntos
Técnicas de Cultura de Células/instrumentação , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mesoderma/patologia , Camundongos
11.
Lab Chip ; 18(3): 451-462, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29318250

RESUMO

Tape-based razor-printing is a flexible and affordable ultra-rapid prototyping approach for microscale device fabrication. However, integration of this prototyping approach into cell-based assay development has been limited to proof of principle demonstrations. This is in large part due to lack of an established or well-characterized option for biocompatible adhesive tape. Without such an option, integration of these areas will remain unexplored. Therefore, to address this critical hurdle, we characterized microscale devices made using a potentially biocompatible double-sided adhesive, ARCare 90106. We validated tape-based device performance against 96-well plates and PDMS microdevices with respect to cell viability, hydrophobic small molecule sequestration, the potential for leaching compounds, use in fluorescence microscopy, and outgassing (bubble formation). Results supported the tape as a promising tool for future cell-based assay development. Therefore, we subsequently demonstrated specific strengths enabled by the ultra-rapid (<1 h per prototype) and affordable (∼$1200 cutting plotter, <$0.05 per prototype) approach. Specifically, data demonstrate the ability to integrate disparate materials for advanced sticker-device functionality such as bonding of polystyrene devices to glass substrates for microscopy applications, inclusion of membranes, and incorporation of different electrospun biomaterials into a single device. Likewise, the approach allowed rapid adoption by uninitiated users. Overall, this study provides a necessary and unique contribution to the largely separate fields of tape-based razor-printing and cell-based microscale assay development by addressing a critical barrier to widespread integration and adoption while also demonstrating the potential for new and future applications.


Assuntos
Técnicas Citológicas/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Linhagem Celular , Desenho de Equipamento , Humanos , Camundongos , Microscopia de Fluorescência , Impressão , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Mol Biosyst ; 13(12): 2615-2624, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29034935

RESUMO

Hedgehog signaling (Hh) has been shown to be hyper-activated in several cancers. However, active Hh signaling can promote or inhibit tumor growth; thus identification of markers beyond main canonical Hh target genes is needed to improve patient selection and clinical outcome in response to Hh inhibitors. Cancer-associated fibroblasts (CAFs) have been linked with tumor progression and beneficial response to Hh inhibitors. Thus, we hypothesized that genes associated with Hh-activated CAFs can be used for stratification of tumors that will benefit from Hh inhibitors. In this work, we evaluated a 15-gene fingerprint that combines Hh and mesenchymal genes associated with CAF phenotype to profile breast cancer sub-types based on gene expression patterns among clustered groups. About 3800 cancer samples were evaluated using random forest models and linear discriminant analysis to sort breast cancer by subtypes and therapeutic approach. The results showed that the Hh-mesenchyme gene fingerprint has a highly sensitive and differential expression pattern among basal and luminal A sub-groups. Basal samples with high levels of Hh target genes had better prognosis than luminal A samples. Luminal A samples with a tendency towards Hh signaling suppression had higher overall and disease-free survival rates particularly if deprived of hormone therapy. Hh transcriptional repressor GLI3 and signaling activator SMO were the top 2 genes for discriminating among samples with active Hh signaling in human breast cancer subtypes and Hh-inhibitor resistant tumors. Caveolin-1 (CAV1), a gene with low expression in CAFs, shows strong correlation with active Hh signaling and discrimination among survival curves in luminal A patients with active or inactive Hh signaling. Our data suggest that CAV1 is an important gene for monitoring Hh inhibition in tumors and support further stratification by hormone therapy status prior to use of Hh inhibitors.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Hedgehog/metabolismo , Caveolina 1/metabolismo , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Mesoderma/metabolismo , Transdução de Sinais/fisiologia
13.
Tissue Eng Part B Rev ; 22(6): 438-458, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27269388

RESUMO

Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.


Assuntos
Engenharia Tecidual , Humanos , Infarto do Miocárdio , Miocárdio , Regeneração , Medicina Regenerativa , Alicerces Teciduais
14.
Mol Cancer Res ; 13(1): 149-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25149359

RESUMO

UNLABELLED: Phosphodiesterase 4D (PDE4D) has recently been implicated as a proliferation-promoting factor in prostate cancer and is overexpressed in human prostate carcinoma. However, the effects of PDE4D inhibition using pharmacologic inhibitors have not been examined in prostate cancer. These studies examined the effects of selective PDE4D inhibitors, NVP-ABE171 and cilomilast, as anti-prostate cancer therapies in both in vitro and in vivo models. The effects of PDE4D inhibitors on pathways that are critical in prostate cancer and/or downstream of cyclic AMP (cAMP) were examined. Both NVP-ABE171 and cilomilast decreased cell growth. In vitro, PDE4D inhibitors lead to decreased signaling of the sonic hedgehog (SHH), androgen receptor (AR), and MAPK pathways, but growth inhibition was best correlated to the SHH pathway. PDE4D inhibition also reduced proliferation of epithelial cells induced by paracrine signaling from cocultured stromal cells that had activated hedgehog signaling. In addition, PDE4D inhibitors decreased the weight of the prostate in wild-type mice. Prostate cancer xenografts grown in nude mice that were treated with cilomilast or NVP-ABE171 had decreased wet weight and increased apoptosis compared with vehicle-treated controls. These studies suggest the pharmacologic inhibition of PDE4D using small-molecule inhibitors is an effective option for prostate cancer therapy. IMPLICATIONS: PDE4D inhibitors decrease the growth of prostate cancer cells in vivo and in vitro, and PDE4D inhibition has therapeutic potential in prostate cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Animais , Ácidos Cicloexanocarboxílicos/administração & dosagem , Proteínas Hedgehog/biossíntese , Humanos , Masculino , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/biossíntese , Naftiridinas/administração & dosagem , Nitrilas/administração & dosagem , Oxidiazóis/administração & dosagem , Inibidores da Fosfodiesterase 4/administração & dosagem , Receptores Androgênicos/biossíntese , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
ACS Nano ; 7(6): 5091-101, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23705969

RESUMO

Lysosomal death pathways are being explored as alternatives of overcoming cancer tumor resistance to traditional forms of treatment. Nanotechnologies that can selectively target and induce permeabilization of lysosomal compartments in cells could become powerful medical tools. Here we demonstrate that iron oxide magnetic nanoparticles (MNPs) targeted to the epidermal growth factor receptor (EGFR) can selectively induce lysosomal membrane permeabilization (LMP) in cancer cells overexpressing the EGFR under the action of an alternating magnetic field (AMF). LMP was observed to correlate with the production of reactive oxygen species (ROS) and a decrease in tumor cell viability. Confocal microscopy images showed an increase in the cytosolic activity of the lysosomal protease cathepsin B. These observations suggest the possibility of remotely triggering lysosomal death pathways in cancer cells through the administration of MNPs which target lysosomal internalization pathways and the application of AMFs.


Assuntos
Compostos Férricos/química , Compostos Férricos/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Campos Magnéticos , Nanopartículas , Transporte Biológico , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Permeabilidade
16.
Integr Biol (Camb) ; 4(2): 142-52, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22234342

RESUMO

Despite strong evidence for the involvement of the stroma in Hedgehog signaling, little is known about the identity of the stromal cells and the signaling mechanisms that mediate the growth promoting effect of Hh signaling. We developed an in vitro co-culture model using microchannel technology to examine the effect of paracrine Hh signaling on proliferation of prostate cancer cells. We show here that activation of Hh signaling in myofibroblasts is sufficient to accelerate tumor cell growth. This effect was independent of any direct effect of Hh ligand on tumor cells or other cellular components of the tumor stroma. Further, the trophic effect of Hh pathway activation in myofibroblasts does not require collaboration of other elements of the stroma or direct physical interaction with the cancer cells. By isolating the tropic effect of Hh pathway activation in prostate stroma, we have taken the first step toward identifying cell-specific mechanisms that mediate the effect of paracrine Hh signaling on tumor growth.


Assuntos
Proteínas Hedgehog/metabolismo , Miofibroblastos/metabolismo , Neoplasias da Próstata/metabolismo , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Humanos , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Miofibroblastos/patologia , Comunicação Parácrina , Receptores Patched , Neoplasias da Próstata/patologia , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco
17.
Integr Biol (Camb) ; 1(3): 267-74, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20011455

RESUMO

The cellular microenvironment plays a critical role in shaping and directing the process of communication between the cells. Soluble signals are responsible for many cellular behaviors such as cell survival, proliferation and differentiation. Despite the importance of soluble signals, canonical methods are not well suited to the study of soluble factor interactions between multiple cell types. Macro-scale technology often puts cells into a convective environment that can wash away and dilute soluble signals from their targets, minimizing local concentrations of important factors. In addition, current methods such as transwells, require large numbers of cells and are limited to studying just two cell types. Here, we present data supporting the use of microchannels to study soluble factor signaling providing improved sensitivity as well as the ability to move beyond existing co-culture and conditioned medium paradigms. In addition, we present data suggesting that microculture can be used to unmask effects of population demographics. In this example the data support the hypothesis that a growth promoting subpopulation of cells exists in the mouse mammary gland.


Assuntos
Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Macrófagos/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Comunicação Parácrina , Neoplasias da Próstata/metabolismo , Linhagem Celular , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Macrófagos/citologia , Masculino , Neoplasias da Próstata/patologia
18.
Lab Chip ; 9(15): 2132-9, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19606288

RESUMO

Polydimethylsiloxane (PDMS) has become a staple of the microfluidics community by virtue of its simple fabrication process and material attributes, such as gas permeability, optical transparency, and flexibility. As microfluidic systems are put toward biological problems and increasingly utilized as cell culture platforms, the material properties of PDMS must be considered in a biological context. Two properties of PDMS were addressed in this study: the leaching of uncured oligomers from the polymer network into microchannel media, and the absorption of small, hydrophobic molecules (i.e. estrogen) from serum-containing media into the polymer bulk. Uncured PDMS oligomers were detectable via MALDI-MS in microchannel media both before and after Soxhlet extraction of PDMS devices in ethanol. Additionally, PDMS oligomers were identified in the plasma membranes of NMuMG cells cultured in PDMS microchannels for 24 hours. Cells cultured in extracted microchannels also contained a detectable amount of uncured PDMS. It was shown that MCF-7 cells seeded directly on PDMS inserts were responsive to hydrophilic prolactin but not hydrophobic estrogen, reflecting its specificity for absorbing small, hydrophobic molecules; and the presence of PDMS floating in wells significantly reduced cellular response to estrogen in a serum-dependent manner. Quantification of estrogen via ELISA revealed that microchannel estrogen partitioned rapidly into the surrounding PDMS to a ratio of approximately 9:1. Pretreatments such as blocking with serum or pre-absorbing estrogen for 24 hours did not affect estrogen loss from PDMS-based microchannels. These findings highlight the importance of careful consideration of culture system properties when determining an appropriate environment for biological experiments.


Assuntos
Membrana Celular/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Técnicas Analíticas Microfluídicas/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Linhagem Celular , Membrana Celular/metabolismo , Meios de Cultura/química , Dimetilpolisiloxanos/análise , Dimetilpolisiloxanos/química , Ensaio de Imunoadsorção Enzimática , Estrogênios/química , Humanos , Luciferases/genética , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/normas , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...