Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 393: 133338, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661466

RESUMO

Advanced glycation end products (AGEs) are a diverse group of compounds formed endogenously and exogenously due to non-enzymatic glycation of proteins and lipids. Although the effects of heating on AGE concentrations in foods are known, few studies have been published addressing the effects of new processing technologies on AGE formation. This work focuses on the current scientific knowledge about the impacts of novel technologies on AGE formation in food products. Most studies do not measure AGE content directly, evaluating only products of the Maillard reaction. Moreover, these studies do not compare distinct operational conditions associated with novel technologies. This lack of information impacts negatively the establishment of process-composition relationships for foods with safe AGE dietary intakes. Overall, the outcomes of this review suggest that the use of novel technologies is a promising alternative to produce food products with a lower AGE content.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Alimentos , Manipulação de Alimentos , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação
2.
Food Res Int ; 157: 111487, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761711

RESUMO

Most of the studies regarding phenolic compounds (PC) have been focused only on one fraction of PC, named extractable phenolic compounds (EPC). As the name suggests, EPC can be directly extracted from the food matrix by using an appropriate solvent. Otherwise, non-extractable phenolic compounds (NEPC) remain in the food matrix after the conventional extraction, and their analysis depends on a hydrolysis process. NEPC is a relevant fraction of PC that acts in the colon, where they are extensively fermented by the action of the microbiota. To understand the health effects associated with the NEPC intake, it is necessary to know which types of compounds are present and their content in foods. In this review, 182 studies published in the last five years about NEPC in foods were evaluated, focusing on critical points of the NEPC analysis. First, EPC exhaustive extraction should be performed before the hydrolysis processes to avoid overestimation of the NEPC fraction. NEPC hydrolysis by aggressive methods modifies their original structure and makes their complete elucidation difficult. These methods must be optimized considering the research objective, as different conditions may result in different amounts and profiles of compounds. Concerning quantification, the widely used spectrophotometric Folin-Ciocalteu method should be avoided as it leads to overestimation. Liquid chromatography coupled to a diode array detector is the most appropriate technique for this purpose. Although pure standard compounds are unavailable in most cases, standards representative of a PC family can be used, and results can be expressed as equivalent. The best approach for NEPC identification is liquid chromatography coupled to a diode array detector and tandem high-resolution mass spectrometry, which generates information regarding chromatographic behavior, UV-vis absorption, accuracy mass and fragmentation pattern. The identification process should associate manual data handling with the bioinformatics-assisted approach.


Assuntos
Fenóis , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Fenóis/análise
3.
Food Res Int ; 143: 110314, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992333

RESUMO

Phycocyanin (C-PC) application by the industry is still limited due to extraction methods drawbacks and to the low stability of these compounds after the extraction process. To overcome such limitations, alternative extraction methodologies have been evaluated, and stabilizing agents have been used under different conditions in the past years. Therefore, the aim of this review was to bring the state of the art of C-PC extraction methods, including main parameters that affect the extraction process and cell disruption mechanisms, as well as the physical and chemical parameters that may influence C-PC stability. Stabilizing agents have been used to avoid C-PC content degradation during storage and food processing. A critical analysis of the extraction methods indicated that pulsed electric field (PEF) is a promising technology for C-PC extraction since the extracts present relative high C-PC concentration and purity. Other methods either result in low purity extracts or are time demanding. Regarding stabilizing agents, natural polymers and sugars are potential compounds to be used in food formulations to avoid color and antioxidant activity losses.


Assuntos
Ficocianina , Spirulina , Animais , Antioxidantes , Decapodiformes , Manipulação de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...