Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(47): 11520-11527, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797673

RESUMO

Water adsorption and dissociation on undoped and Ti-doped hematite thin films were investigated using near-ambient pressure photoemission and DFT calculations. A fine understanding of doping effects is of prime importance in the framework of photoanode efficiency in aqueous conditions. By comparison to pure Fe2O3 surface, the Ti(2%)-Fe2O3 surface shows a lower hydroxylation level. We demonstrate that titanium induces wide structural modifications of the surface, preventing it from reaching full hydroxylation.

2.
Angew Chem Int Ed Engl ; 58(29): 9933-9938, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31087744

RESUMO

Diamondoids, sp3 -hybridized nanometer-sized diamond-like hydrocarbons (nanodiamonds), difunctionalized with hydroxy and primary phosphine oxide groups, enable the assembly of the first sp3 -C-based chemical sensors by vapor deposition. Both pristine nanodiamonds and palladium nanolayered composites can be used to detect toxic NO2 and NH3 gases. This carbon-based gas sensor technology allows reversible NO2 detection down to 50 ppb and NH3 detection at 25-100 ppm concentration with fast response and recovery processes at 100 °C. Reversible gas adsorption and detection is compatible with 50 % humidity conditions. Semiconducting p-type sensing properties are achieved from devices based on primary phosphine-diamantanol, in which high specific area (ca. 140 m2 g-1 ) and channel nanoporosity derive from H-bonding.

3.
Phys Chem Chem Phys ; 21(8): 4367-4374, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724921

RESUMO

Density functional theory calculations are performed to study the out-of-plane polarisation in BaTiO3 (BTO) thin films epitaxially grown on platinum. Prior to any polarisation calculation, the stability of the Pt(001)/BaTiO3(001) structure is thoroughly discussed. In particular, the nature of the Pt/BTO and BTO/vacuum interfaces is characterised. The growth of BTO is shown to start with a TiO2 layer while the nature of the surface termination does not broadly modify the stability. Therefore both upper terminations are considered when describing the ferroelectric behaviour in Pt/BTO interfaces. The geometric and electronic effects of the substrate on the polarisation are investigated. To isolate the electronic influence of platinum, the out-of-plane polarisation in Pt/BTO systems is compared to the one in isolated BTO slabs constrained to the same lattice mismatch induced by the epitaxial growth on platinum. The ferroelectric phase is favoured as soon as the thickness is larger than 23 Å, both for isolated and deposited BTO, for the smallest width. The Pt substrate will modify the size of polarisation domains, while an upper BaO layer through the use of asymmetric [TiO2/BaO] systems will induce an increase of the polarisation. One could take advantage of this experimentally.

4.
Nanoscale ; 7(5): 1956-62, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25535933

RESUMO

We detail herein readily accessible processes to control previously unobserved robust self-assemblies of nanodiamonds (diamondoids) in micro- and nanocrystals from their mild vapor deposition. The chemical functionalization of uniform and discernible nanodiamonds was found to be a key parameter, and depending on the type of functional group (hydroxy, fluorine, etc.) and its position on the diamondoid, the structure of the discrete deposits can vary dramatically. Thus, well-defined anisotropic structures such as rod, needle, triangle or truncated octahedron shapes can be obtained, and self-assembled edifices of sizes ranging from 20 nm to several hundred micrometers formed with conservation of a similar structure for a given diamondoid. Key thermodynamic data including sublimation enthalpy of diamondoid derivatives are reported, and the SEM of the self-assemblies coupled with EDX analyses and XRD attest the nature and purity of nanodiamond crystal deposits. This attractive method is simple and outperforms in terms of deposit quality dip-coating methods we used. This vapor phase deposition approach is expected to allow for an easy formation of diamondoid nanoobjects on different types of substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...