Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(8): 3345-3353, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301154

RESUMO

Malaria is a severe disease caused by cytozoic parasites of the genus Plasmodium, which infiltrate and infect red blood cells. Several drugs have been developed to combat the devastating effects of malaria. Antimalarials based on quinolines inhibit the crystallization of hematin into hemozoin within the parasite, ultimately leading to its demise. Despite the frequent use of these agents, there are unanswered questions about their mechanisms of action. In the present study, the quinoline chloroquine and its interaction with the target structure hematin was investigated using an advanced, highly parallelized Raman difference spectroscopy (RDS) setup. Simultaneous recording of the spectra of hematin and chloroquine mixtures with varying compositions enabled the observation of changes in peak heights and positions based on the altered molecular structure resulting from their interaction. A shift of (-1.12 ± 0.05) cm-1 was observed in the core-size marker band ν(CαCm)asym peak position of the 1:1 chloroquine-hematin mixture compared to pure hematin. The oxidation-state marker band ν(pyrrole half-ring)sym exhibited a shift by (+0.93 ± 0.13) cm-1. These results were supported by density functional theory (DFT) calculations, indicating a hydrogen bond between the quinolinyl moiety of chloroquine and the oxygen atom of ferric protoporphyrin IX hydroxide (Fe(III)PPIX-OH). The consequence is a reduced electron density within the porphyrin moiety and an increase in its core size. This hypothesis provided further insights into the mechanism of hemozoin inhibition, suggesting chloroquine binding to the monomeric form of hematin, thereby preventing its further crystallization to hemozoin.


Assuntos
Antimaláricos , Hemeproteínas , Malária , Humanos , Antimaláricos/farmacologia , Cloroquina/farmacologia , Cloroquina/química , Hemina/química , Hemeproteínas/química , Análise Espectral , Plasmodium falciparum
2.
Anal Chem ; 95(34): 12719-12731, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37586701

RESUMO

A thorough understanding of the interaction of endoperoxide antimalarial agents with their biological target structures is of utmost importance for the tailored design of future efficient antimalarials. Detailed insights into molecular interactions between artesunate and ß-hematin were derived with a combination of resonance Raman spectroscopy, two-dimensional correlation analysis, and density functional theory calculations. Resonance Raman spectroscopy with three distinct laser wavelengths enabled the specific excitation of different chromophore parts of ß-hematin. The resonance Raman spectra of the artesunate-ß-hematin complexes were thoroughly analyzed with the help of high-resolution and highly sensitive two-dimensional correlation spectroscopy. Spectral changes in the peak properties were found with increasing artesunate concentration. Changes in the low-frequency, morphology-sensitive Raman bands indicated a loss in crystallinity of the drug-target complexes. Differences in the high-wavenumber region were assigned to increased distortions of the planarity of the structure of the target molecule due to the appearance of various coexisting alkylation species. Evidence for the appearance of high-valent ferryl-oxo species could be observed with the help of differences in the peak properties of oxidation-state sensitive Raman modes. To support those findings, the relaxed ground-state structures of ten possible covalent mono- and di-meso(Cm)-alkylated hematin-dihydroartemisinyl complexes were calculated using density functional theory. A very good agreement with the experimental peak properties was achieved, and the out-of-plane displacements along the lowest-frequency normal coordinates were investigated by normal coordinate structural decomposition analysis. The strongest changes in all data were observed in vibrations with a high participation of Cm-parts of ß-hematin.


Assuntos
Antimaláricos , Hemeproteínas , Artesunato , Análise Espectral Raman/métodos , Hemeproteínas/química
3.
Anal Chem ; 95(19): 7630-7639, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37141178

RESUMO

Deep ultraviolet (DUV) resonance Raman experiments are performed, investigating the novel, promising antimalarial ferroquine (FQ). Two buffered aqueous solutions with pH values of 5.13 and 7.00 are used, simulating the acidic and neutral conditions inside a parasite's digestive vacuole and cytosol, respectively. To imitate the different polarities of the membranes and interior, the buffer's 1,4-dioxane content was increased. These experimental conditions should mimic the transport of the drug inside malaria-infected erythrocytes through parasitophorous membranes. Supporting density functional theory (DFT) calculations on the drug's micro-speciation were performed, which could be nicely assigned to shifts in the peak positions of resonantly enhanced high-wavenumber Raman signals at λexc = 257 nm. FQ is fully protonated in polar mixtures like the host interior and the parasite's cytoplasm or digestive vacuole (DV) and is only present as a free base in nonpolar ones, such as the host's and parasitophorous membranes. Additionally, the limit of detection (LoD) of FQ at vacuolic pH values was determined using DUV excitation wavelengths at 244 and 257 nm. By applying the resonant laser line at λexc = 257 nm, a minimal FQ concentration of 3.1 µM was detected, whereas the pre-resonant excitation wavelength 244 nm provides an LoD of 6.9 µM. These values were all up to one order of magnitude lower than the concentration found for the food vacuole of a parasitized erythrocyte.


Assuntos
Antimaláricos , Antimaláricos/farmacologia , Análise Espectral Raman , Teoria da Densidade Funcional , Biomimética
4.
Anal Chem ; 94(29): 10346-10354, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35820661

RESUMO

Raman spectroscopy provides an extremely high chemical selectivity. Raman difference spectroscopy is a technique to reveal even the smallest differences that occur due to weak interactions between substances and changes in the molecular structure. To enable parallelized and highly sensitive Raman difference spectroscopy in a microtiter-array, a diffractive optical element, a lens array, and a fiber bundle were integrated into a Raman spectroscopy setup in a unique fashion. The setup was evaluated with a microtiter-array containing pyridine-water complexes, and subwavenumber changes below the spectrometer's resolution could be resolved. The spectral changes were emphasized with two-dimensional correlation analysis. Density functional theory calculation and "atoms in molecule" analysis were performed to simulate the intermolecular long-range interactions between water and pyridine molecules and to get insight into the involved noncovalent interactions, respectively. It was found that by the addition of pyridine, the energy portion of hydrogen bonds to the total complexation energy between pyridine and water reduces. These results demonstrate the unique abilities of the new setup to investigate subtle changes due to biochemically important molecular interactions and opens new avenues to perform drug binding assays and to monitor highly parallelized chemical reactions.


Assuntos
Análise Espectral Raman , Água , Ligação de Hidrogênio , Estrutura Molecular , Piridinas , Análise Espectral Raman/métodos , Água/química
6.
Anal Chem ; 93(30): 10546-10552, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34297525

RESUMO

Power-to-gas is a heavily discussed option to store surplus electricity from renewable sources. Part of the generated hydrogen could be fed into the gas grid and lead to fluctuations in the composition of the fuel gas. Consequently, both operators of transmission networks and end users would need to frequently monitor the gas to ensure safety as well as optimal and stable operation. Currently, gas chromatography-based analysis methods are the state of the art. However, these methods have several downsides for time-resolved and distributed application and Raman gas spectroscopy is favorable for future point-of-use monitoring. Here, we demonstrate that fiber-enhanced Raman gas spectroscopy (FERS) enables the simultaneous detection of all relevant gases, from major (methane, CH4; hydrogen, H2) to minor (C2-C6 alkanes) fuel gas components. The characteristic peaks of H2 (585 cm-1), CH4 (2917 cm-1), isopentane (765 cm-1), i-butane (798 cm-1), n-butane (830 cm-1), n-pentane (840 cm-1), propane (869 cm-1), ethane (993 cm-1), and n-hexane (1038 cm-1) are well resolved in the broadband spectra acquired with a compact spectrometer. The fiber enhancement achieved in a hollow-core antiresonant fiber enables highly sensitive measurements with limits of detection between 90 and 180 ppm for different hydrocarbons. Both methane and hydrogen were quantified with high accuracy with average relative errors of 1.1% for CH4 and 1.5% for H2 over a wide concentration range. These results show that FERS is ideally suited for comprehensive fuel gas analysis in a future, where regenerative sources lead to fluctuations in the composition of gas.


Assuntos
Alcanos , Hidrogênio , Gases , Metano , Análise Espectral Raman
8.
Anal Chem ; 92(18): 12564-12571, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32845132

RESUMO

Microbial methanogenesis is a key biogeochemical process in the carbon cycle that is responsible for 70% of global emissions of the potent greenhouse gas methane (CH4). Further knowledge about microbial methanogenesis is crucial to mitigate emissions, increase climate model accuracy, or advance methanogenic biogas production. The current understanding of the substrate use of methanogenic microbes is limited, especially regarding the methylotrophic pathway. Here, we present fiber-enhanced Raman spectroscopy (FERS) of headspace gases as an alternate tool to study methanogenesis and substrate use in particular. The optical technique is nondestructive and sensitive to CH4, hydrogen (H2), and carbon dioxide with a large dynamic range from trace levels (demonstrated LoDs: CH4, 3 ppm; H2, 49 ppm) to pure gases. In addition, the portable FERS system can provide quantitative information about methanol concentration in the liquid phase of microbial cultures through headspace gas sampling (LoD 25 ppm). We demonstrate how FERS gas sensing could enable us to track substrate and product levels of microbial methanogenesis with just one instrument. The versatility of Raman gas spectroscopy could moreover help us to elucidate links between nitrogen and carbon cycle in microbial communities in the near future.


Assuntos
Metano/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Gases/química , Hidrogênio/análise , Hidrogênio/metabolismo , Metano/análise , Análise Espectral Raman
9.
Molecules ; 24(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491881

RESUMO

The fight against counterfeit pharmaceuticals is a global issue of utmost importance, as failed medication results in millions of deaths every year. Particularly affected are antimalarial tablets. A very important issue is the identification of substandard tablets that do not contain the nominal amounts of the active pharmaceutical ingredient (API), and the differentiation between genuine products and products without any active ingredient or with a false active ingredient. This work presents a novel approach based on fiber-array based Raman hyperspectral imaging to qualify and quantify the antimalarial APIs lumefantrine and artemether directly and non-invasively in a tablet in a time-efficient way. The investigations were carried out with the antimalarial tablet Riamet® and self-made model tablets, which were used as examples of counterfeits and substandard. Partial least-squares regression modeling and density functional theory calculations were carried out for quantification of lumefantrine and artemether and for spectral band assignment. The most prominent differentiating vibrational signatures of the APIs were presented.


Assuntos
Antimaláricos/análise , Antimaláricos/química , Medicamentos Falsificados/análise , Medicamentos Falsificados/química , Análise Espectral Raman , Teoria da Densidade Funcional , Conformação Molecular , Análise de Regressão , Análise Espectral Raman/métodos , Comprimidos
10.
Anal Chem ; 91(12): 7562-7569, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31050402

RESUMO

Stable isotopes are used in ecology to track and disentangle different processes and pathways. Especially for studies focused on the gas exchange of plants, sensing techniques that offer oxygen (O2) and carbon dioxide (CO2) sensitivity with isotopic discrimination are highly sought after. Addressing this challenge, fiber-enhanced Raman gas spectroscopy is introduced as a fast optical technique directly combining 13CO2 and 12CO2 as well as 18O2 and 16O2 measurements in one instrument. We demonstrate how a new type of optical hollow-core fiber, the so-called revolver fiber, is utilized for enhanced Raman gas sensing. Carbon dioxide and oxygen isotopologues were measured at concentrations expected when using 13C- and 18O-labeled gases in plant experiments. Limits of detection have been determined to be 25 ppm for CO2 and 150 ppm for O2. The combination of measurements with different integration times allows the creation of highly resolved broadband spectra. With the help of calculations based on density functional theory, the line at 1512 cm-1 occurring in the oxygen spectrum is assigned to 18O16O. The relative abundances of the isotopologues 18O16O and nitrogen 15N14N were in good agreement with typical values. For CO2, fiber-enhanced Raman spectra show the Fermi diad and hotbands of 12C16O2, 13C16O2, and 12C18O16O. Several weak lines were observed, and the line at 1426 cm-1 was identified as originating from the (0 4 0 2) → (0 2 0 2) transition of 12C16O2. With the demonstrated sensitivity and discriminatory power, fiber-enhanced Raman spectroscopy is a possible alternative means to investigate plant metabolism, directly combining 13CO2 and 12CO2 measurements with 18O2 and 16O2 measurements in one instrument. The presented method thus has large potential for basic analytical investigations as well as for applications in the environmental sciences.

11.
Phys Chem Chem Phys ; 19(44): 29918-29926, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29087422

RESUMO

Promising new antimalarial agents were investigated using FT-NIR and deep-UV resonance Raman spectroscopy. The Raman spectra of the seven arylisoquinolines (AIQ) were calculated with the help of density functional theory (DFT). Very good agreement with the experimental data was achieved and a convincing mode assignment was performed with the help of the calculated potential energy distribution (PED). For the non-resonant Raman spectra the most prominent bands were assigned to ν(C[double bond, length as m-dash]C) stretching modes of the isoquinoline system. To differentiate between substances with similar structures, deep-UV resonance Raman spectra were recorded. Raman bands in the range between 1250 and 1210 cm-1 were assigned to ν(C[double bond, length as m-dash]C) stretching vibrations in combination with δ(HCC) deformation vibrations of the aryl rests. These vibrations of the aryl part of the molecules were selectively enhanced, which, thus, enabled the differentiation of similar active agents from each other. For λexc = 257 nm excitation, strong ν(C[double bond, length as m-dash]C) vibrations of the isoquinoline (benzo-) part dominate the Raman spectrum in the range between 1685 and 1585 cm-1 and for λexc = 244 nm the Raman signals between 1430 and 1350 cm-1 were enhanced and assigned to ν(C[double bond, length as m-dash]C) of the isoquinoline (pyridino-) system.

12.
Anal Chem ; 89(18): 9997-10003, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28840713

RESUMO

Deep UV resonance Raman spectroscopy is introduced as an analytical tool for ultrasensitive analysis of antibiotics used for empirical treatment of patients with sepsis and septic shock, that is, moxifloxacin, meropenem, and piperacillin in aqueous solution and human urine. By employing the resonant excitation wavelengths λexc = 244 nm and λexc = 257 nm, only a small sample volume and short acquisition times are needed. For a better characterization of the matrix urine, the main ingredients were investigated. The capability of detecting the antibiotics in clinically relevant concentrations in aqueous media (LODs: 13.0 ± 1.4 µM for moxifloxacin, 43.6 ± 10.7 µM for meropenem, and 7.1 ± 0.6 µM for piperacillin) and in urine (LODs: 36.6 ± 11.0 µM for moxifloxacin, and 114.8 ± 3.1 µM for piperacillin) points toward the potential of UV Raman spectroscopy as point-of-care method for therapeutic drug monitoring (TDM). This procedure enables physicians to achieve fast adequate dosing of antibiotics to improve the outcome of patients with sepsis.


Assuntos
Antibacterianos/análise , Raios Ultravioleta , Teoria da Densidade Funcional , Humanos , Análise Espectral Raman , Água/química
13.
Analyst ; 141(21): 6104-6115, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27704083

RESUMO

Fiber enhanced resonance Raman spectroscopy (FERS) is introduced for chemically selective and ultrasensitive analysis of the biomolecules hematin, hemoglobin, biliverdin, and bilirubin. The abilities for analyzing whole intact, oxygenated erythrocytes are proven, demonstrating the potential for the diagnosis of red blood cell related diseases, such as different types of anemia and hemolytic disorders. The optical fiber enables an efficient light-guiding within a miniaturized sample volume of only a few micro-liters and provides a tremendously improved analytical sensitivity (LODs of 0.5 µM for bilirubin and 0.13 µM for biliverdin with proposed improvements down to the pico-molar range). FERS is a less invasive method than the standard ones and could be a new analytical method for monitoring neonatal jaundice, allowing a precise control of the unconjugated serum bilirubin levels, and therefore, providing a better prognosis for newborns. The potential for sensing very low concentrations of the bile pigments may also open up new opportunities for cancer research. The abilities of FERS as a diagnostic tool are explored for the elucidation of jaundice with different etiologies including the rare, not yet well understood diseases manifested in green jaundice. This is demonstrated by quantifying clinically relevant concentrations of bilirubin and biliverdin simultaneously in the micro-molar range: for the case of hyperbilirubinemia due to malignancy, infectious hepatitis, cirrhosis or stenosis of the common bile duct (1 µM biliverdin together with 50 µM bilirubin) and for hyperbiliverdinemia (25 µM biliverdin and 75 µM bilirubin). FERS has high potential as an ultrasensitive analytical technique for a wide range of biomolecules and in various life-science applications.


Assuntos
Bilirrubina/análise , Biliverdina/análise , Eritrócitos/química , Hiperbilirrubinemia/diagnóstico , Análise Espectral Raman , Humanos , Recém-Nascido , Fibras Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...