Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2016): 20232361, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351802

RESUMO

Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.


Assuntos
Arvicolinae , Ecossistema , Animais , Dinâmica Populacional , Estações do Ano , Cadeia Alimentar , Regiões Árticas
2.
Environ Sci Technol ; 57(45): 17363-17373, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37903215

RESUMO

Ground subsidence caused by permafrost thawing causes the formation of thermokarst ponds, where organic compounds from eroding permafrost accumulate. We photolyzed water samples from two such ponds in Northern Quebec and discovered the emission of volatile organic compounds (VOCs) using mass spectrometry. One pond near peat-covered permafrost mounds was organic-rich, while the other near sandy mounds was organic-poor. Compounds up to C10 were detected, comprising the atoms of O, N, and S. The main compounds were methanol, acetaldehyde, and acetone. Hourly VOC fluxes under actinic fluxes similar to local solar fluxes might reach up to 1.7 nmol C m-2 s-1. Unexpectedly, the fluxes of VOCs from the organic-poor pond were greater than those from the organic-rich pond. We suggest that different segregations of organics at the air/water interface may partly explain this observation. This study indicates that sunlit thermokarst ponds are a significant source of atmospheric VOCs, which may affect the environment and climate via ozone and aerosol formation. Further work is required for understanding the relationship between the pond's organic composition and VOC emission fluxes.


Assuntos
Poluentes Atmosféricos , Ozônio , Pergelissolo , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Lagoas/análise , Luz Solar , Ozônio/análise , Água , Poluentes Atmosféricos/análise , Monitoramento Ambiental , China
3.
Oecologia ; 202(2): 211-225, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351629

RESUMO

During the cold arctic winter, small mammals like lemmings seek refuge inside the snowpack to keep warm and they dig tunnels in the basal snow layer, usually formed of a soft depth hoar, to find vegetation on which they feed. The snowpack, however, is a heterogenous medium and lemmings should use habitats where snow properties favor their survival and winter reproduction. We determined the impact of snow physical properties on lemming habitat use and reproduction in winter by sampling their winter nests for 13 years and snow properties for 6 years across 4 different habitats (mesic, riparian, shrubland, and wetland) on Bylot Island in the Canadian High Arctic. We found that lemmings use riparian habitat most intensively because snow accumulates more rapidly, the snowpack is the deepest and temperature of the basal snow layer is the highest in this habitat. However, in the deepest snowpacks, the basal depth hoar layer was denser and less developed than in habitats with shallower snowpacks, and those conditions were negatively related to lemming reproduction in winter. Shrubland appeared a habitat of moderate quality for lemmings as it favored a soft basal snow layer and a deep snowpack compared with mesic and wetland, but snow conditions in this habitat critically depend on weather conditions at the beginning of the winter. With climate change, a hardening of the basal layer of the snowpack and a delay in snow accumulation are expected, which could negatively affect the winter habitat of lemmings and be detrimental to their populations.


Assuntos
Arvicolinae , Neve , Animais , Canadá , Ecossistema , Estações do Ano
4.
Nat Commun ; 13(1): 6379, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316310

RESUMO

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Assuntos
Ecossistema , Pergelissolo , Estações do Ano , Regiões Árticas , Mudança Climática
5.
Nat Geosci ; 15(7): 554-560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845978

RESUMO

Considerable expansion of shrubs across the Arctic tundra has been observed in recent decades. These shrubs are thought to have a warming effect on permafrost by increasing snowpack thermal insulation, thereby limiting winter cooling and accelerating thaw. Here, we use ground temperature observations and heat transfer simulations to show that low shrubs can actually cool the ground in winter by providing a thermal bridge through the snowpack. Observations from unmanipulated herb tundra and shrub tundra sites on Bylot Island in the Canadian high Arctic reveal a 1.21 °C cooling effect between November and February. This is despite a snowpack that is twice as insulating in shrubs. The thermal bridging effect is reversed in spring when shrub branches absorb solar radiation and transfer heat to the ground. The overall thermal effect is likely to depend on snow and shrub characteristics and terrain aspect. The inclusion of these thermal bridging processes into climate models may have an important impact on projected greenhouse gas emissions by permafrost.

6.
Opt Express ; 27(16): 22983-22993, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510583

RESUMO

The physical porosity ${\Phi}$Φ of a porous material determines most of its properties. Although the optical porosity ${\Phi} _{\textrm {opt}}$Φopt can be measured, relating this quantity to ${\Phi}$Φ remains a challenge. Here we derive relationships between the optical porosity, the effective refractive index $n_{\textrm {eff}}$neff and the physical porosity of weakly absorbing porous media. It introduces the absorption enhancement parameter ${B}$B, which quantifies the asymmetry of photon path lengths between the solid material and the pores and can be derived from the absorption coefficient $\mu _a$µa of the material. Hence ${\Phi}$Φ can be derived from combined measurements of $n_{\textrm {eff}}$neff and $\mu _a$µa. The theory is validated against laboratory measurements and numerical experiments, thus solving a long-standing issue in optical porosimetry. This suggests that optical measurements can be used to estimate physical porosity with an accuracy better than 10$\%$%.

7.
Microorganisms ; 7(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416183

RESUMO

Since 1999, atmospheric and snow chemists have shown that snow is a very active photochemical reactor that releases reactive gaseous species to the atmosphere including nitrogen oxides, hydrocarbons, aldehydes, halocarbons, carboxylic acids and mercury. Snow photochemistry therefore affects the formation of ozone, a potent greenhouse gas, and of aerosols, which affect the radiative budget of the planet and, therefore, its climate. In parallel, microbiologists have investigated microbes in snow, identified and quantified species, and sometimes discussed their nutrient supplies and metabolism, implicitly acknowledging that microbes could modify snow chemical composition. However, it is only in the past 10 years that a small number of studies have revealed that microbial activity in cold snow (< 0 °C, in the absence of significant amounts of liquid water) could lead to the release of nitrogen oxides, halocarbons, and mercury into the atmosphere. I argue here that microbes may have a significant effect on snow and atmospheric composition, especially during the polar night when photochemistry is shut off. Collaborative studies between microbiologists and snow and atmospheric chemists are needed to investigate this little-explored field.

8.
J Phys Chem A ; 117(23): 4733-49, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23597185

RESUMO

Snow is a very active photochemical reactor that considerably affects the composition and chemistry of the lower troposphere in polar regions. Snow photochemistry models have therefore been recently developed to describe these processes. In all those models, the chemically active medium is a brine formed at the surface of snow crystals by impurities whose presence cause surface melting. Reaction and photolysis rate coefficients are those measured in dilute liquid solutions. Here, we critically examine the basis for these models by considering the structure of ice crystal surfaces, the processes involved in the interactions between impurities and ice crystals, the location of impurities in snow, and the reactivity of impurities in the various media present in snow. We conclude that the brine formed by impurities can only be present in grooves at grain boundaries and cannot cover ice crystal surfaces because of insufficient ice wettability. It is then very likely that most reactions in snow do not take place in liquids, but rather either on an actual ice surface highly different from a liquid or in particulate matter contained in snow, such as organic particles that are thought to contain most snow chromophores. We discuss why some snow models appear to adequately reproduce some observations, concluding that they are insufficiently constrained and that the use of adjustable parameters allows acceptable fits. We discuss the complexity of developing a snow model without adjustable parameters and with a predictive value. We conclude that reaching this goal in the near future is a tremendous challenge. Modeling attempts focused on snow where the impact of organic particles is minimal, such as on the east Antarctic plateau, represents the best chance of midterm success.

9.
Anal Chim Acta ; 704(1-2): 162-73, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21907034

RESUMO

In this study we improved the dansylacetamidooxyamine (DNSAOA)-LC-fluorescence method for the determination of aqueous-phase glyoxal (GL), methylglyoxal (MG) and hydroxyacetaldehyde (HA). As derivatization of dicarbonyls can potentially lead to complex mixtures, a thorough study of the reaction patterns of GL and MG with DNSAOA was carried out. Derivatization of GL and MG was shown to follow the kinetics of successive reactions, yielding predominantly doubly derivatized compounds. We verified that the bis-DNSAOA structure of these adducts exerted only minor influence on their fluorescence properties. Contrary to observations made with formaldehyde, derivatization of GL, MG and, to a lesser extent of HA, was shown to be faster in acidic (H(2)SO(4)) medium with a maximum of efficiency for acid concentrations of ca. 2.5 mM. Concomitant separation of GL, MG, HA and of single carbonyls was achieved within 20 min by using C(18) chromatography and a gradient of CH(3)CN in water. Detection limits of 0.27, 0.17 and 0.12 nM were determined for GL, MG and HA, respectively. Consequently, low sample volumes are sufficient and, unlike numerous published methods, neither preconcentration nor large injection volumes are necessary to monitor trace-level samples. The method shows relative measurement uncertainties better than ±15% at the 95% level of confidence and good dynamic ranges (R(2)>0.99) from 0.01 to 1.5 µM for all carbonyls. GL, MG and HA were identified for the first time in polar snow samples, but also in saline frost flowers for which unexpected levels of 0.1-0.6 µM were measured. Concentrations in the 0.02-2.3 µM range were also measured in cloud water. In most samples, a predominance of HA over GL and MG was observed.

10.
J Phys Chem A ; 115(3): 307-17, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21171657

RESUMO

Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems.

11.
Environ Sci Technol ; 41(17): 6033-8, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17937278

RESUMO

The snowpack is a reservoir for semivolatile organic compounds (SVOCs) and, in particular, for persistent organic pollutants (POPs), which are sequestered in winter and released to the atmosphere or hydrosphere in the spring. Modeling these processes usually assumes that SVOCs are incorporated into the snowpack by adsorption to snow surfaces, but this has never been proven because the specific surface area (SSA) of snow has never been measured together with snow composition. Here we expose natural snow to phenanthrene vapors (one of the more volatile POPs) and measure for the first time both the SSA and the chemical composition of the snow. The results are consistent with an adsorption equilibrium. The measured Henry's law constant is H(Phen)(T) = 2.88 x 10(22) exp(-10660/7) Pa m2 mol(-1), with Tin Kelvin. The adsorption enthalpy is delta H(ads) = -89 +/- 18 kJ mol(-1). We also perform molecular dynamics calculations of phenanthrene adsorption to ice and obtain AHads = -85 +/- 8 kJ mol(-1), close to the experimental value. Results are applied to the adsorption of phenanthrene to the Arctic and subarctic snowpacks. The subarctic snowpack, with a low snow area index (SAI = 1000), is a negligible reservoir of phenanthrene, butthe colder Arctic snowpack, with SAI = 2500, sequesters most of the phenanthrene present in the (snow + boundary layer) system.


Assuntos
Algoritmos , Monitoramento Ambiental , Poluentes Ambientais/análise , Fenantrenos/análise , Neve/química , Adsorção , Regiões Árticas , Atmosfera , Poluentes Ambientais/química , Modelos Teóricos , Fenantrenos/química , Estações do Ano , Volatilização
12.
Microsc Res Tech ; 62(1): 33-48, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12938116

RESUMO

Current theories of snow metamorphism indicate that sublimating snow crystals have rounded shapes, while growing crystals have shapes that depend on growth rates. At slow growth rates, crystals are rounded. At moderate rates, they have flat faces with rounded edges. At fast growth rates, crystals have flat faces with sharp edges, and they have hollow faces at very fast growth rates. The main growth/sublimation mechanism is thought to be by the homogeneous nucleation of new layers at or near crystal edges. It was also suggested that the equilibrium shape of snow crystals would be temperature dependent: rounded above -10.5 degrees C, and faceted below. To test these paradigms, we have performed SEM investigations of snow samples having undergone metamorphism under natural conditions, and of snow samples subjected to isothermal metamorphism at -4 degrees and -15 degrees C in the laboratory. In general, current theories predicting crystal shapes as a function of growth rates, and of whether crystals are growing or sublimating, are verified. However, the transition in equilibrium shapes from rounded to faceted at -10.5 degrees C is not observed in our isothermal experiments that reveal a predominance of rounded shapes after more than a month of metamorphism at -4 and -15 degrees C. Some small crystals with flat faces that also have sharp angles at -15 degrees C, are observed in our isothermal experiments. These faces are newly formed, and contradict current theory. Several hypotheses are proposed to explain their occurrence. One is that they are due to sublimation at emerging dislocations.


Assuntos
Microscopia Eletrônica de Varredura/instrumentação , Neve , Cristalização , Microscopia Eletrônica de Varredura/métodos
13.
Environ Sci Technol ; 37(4): 661-6, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12636262

RESUMO

The snowpack can impact atmospheric chemistry by exchanging adsorbed or dissolved gases with the atmosphere. Modeling this impact requires the knowledge of the specific surface area (SSA) of snow and its variations with time. We have therefore measured the evolution of the SSA of eight recent surface snow layers in the Arctic and the French Alps, using CH4 adsorption at liquid nitrogen temperature (77 K). The SSA of fresh snow layers was found to decrease with time, from initial values in the range 613-1540 cm2/g to values as low as 257 cm2/g after 6 days. This is explained by snow metamorphism, which causes modifications in crystal shapes, here essentially crystal rounding and the disappearance of microstructures. A parametrization of the rate of SSA decrease is proposed. We fit the SSA decrease to an exponential law and find that the time constant alpha(exp) (day(-1)) depends on temperature according to alpha(exp) = 76.6 exp (-1708/7), with Tin kelvin. Our parametrization predicts that the SSA of a snow layer evolving at -40 degrees C will decrease by a factor of 2 after 14 days, while a similar decrease at -1 degrees C will only require 5 days. Wind was found to increase the rate of SSA decrease, but insufficient data did not allow a parametrization of this effect.


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Neve , Adsorção , Fenômenos Químicos , Físico-Química , Monitoramento Ambiental , Vento
14.
Science ; 297(5586): 1506-10, 2002 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-12202818

RESUMO

The presence of snow greatly perturbs the composition of near-surface polar air, and the higher concentrations of hydroxyl radicals (OH) observed result in a greater oxidative capacity of the lower atmosphere. Emissions of nitrogen oxides, nitrous acid, light aldehydes, acetone, and molecular halogens have also been detected. Photolysis of nitrate ions contained in the snow appears to play an important role in creating these perturbations. OH formed in the snowpack can oxidize organic matter and halide ions in the snow, producing carbonyl compounds and halogens that are released to the atmosphere or incorporated into snow crystals. These reactions modify the composition of the snow, of the interstitial air, and of the overlying atmosphere. Reconstructing the composition of past atmospheres from ice-core analyses may therefore require complex corrections and modeling for reactive species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...