Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743245

RESUMO

Candida spp. can be found in the human microbiome. However, immunocompromised patients are likely to develop invasive Candida infections, with mortality rates higher than 50%. The discovery of C. auris, a species that rapidly acquire antifungal resistance, increased the concern about Candida infections. The limited number of antifungal agents and the high incidence of resistance to them make imperative the development of new antifungal drugs. ß-lapachone is a biological active naphthoquinone that displays antifungal activity against C. albicans and C. glabrata. The aim of this study was to evaluate if this substance affects C. auris growth and elucidate its mechanism of action. A fluconazole-resistant C. auris isolate was used in this study. The antifungal activity of ß-lapachone was determined through microbroth dilution assays, and its mechanism of action was evaluated using fluorescent probes. Interaction with fluconazole and amphotericin B was assessed by disk diffusion assay and checkerboard. ß-lapachone inhibited planktonic C. auris cell growth by 92.7%, biofilm formation by 84.9%, and decrease the metabolism of preformed biofilms by 87.1% at 100 µg/ml. At 100 µg/ml, reductions of 30% and 59% of Calcofluor White and Nile red fluorescences were observed, indicating that ß-lapachone affects cell wall chitin and neutral lipids content, respectively. Also, the ratio 590 nm/529 nm of JC-1 decreased 52%, showing that the compound affects mitochondria. No synergism was observed between ß-lapachone and fluconazole or amphotericin B. Data show that ß-lapachone may be a promising candidate to be used as monotherapy to treat C. auris resistant infections.

2.
Biomolecules ; 12(12)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551248

RESUMO

Aspergillus unguis belongs to the Aspergillus section Nidulantes. This species is found in soils and organisms from marine environments, such as jellyfishes and sponges. The first chemical study reported in the literature dates from 1970, with depsidones nidulin (1), nornidulin (2), and unguinol (3) being the first isolated compounds. Fifty-two years since this first study, the isolation and characterization of ninety-seven (97) compounds have been reported. These compounds are from different classes, such as depsides, depsidones, phthalides, cyclopeptides, indanones, diarylethers, pyrones, benzoic acid derivatives, orcinol/orsenillate derivatives, and sesterpenoids. In terms of biological activities, the first studies on isolated compounds from A. unguis came only in the 1990s. Considering the tendency for antiparasitic and antibiotics to become ineffective against resistant microorganisms and larvae, A. unguis compounds have also been extensively investigated and some compounds are considered very promising. In addition to these larvicidal and antimicrobial activities, these compounds also show activity against cancer cell lines, animal growth promotion, antimalarial and antioxidant activities. Despite the diversity of these compounds and reported biological activities, A. unguis remains an interesting target for studies on metabolic induction to produce new compounds, the determination of new biological activities, medicinal chemistry, structural modification, biotechnological approaches, and molecular modeling, which have yet to be extensively explored.


Assuntos
Anti-Infecciosos , Aspergillus , Animais , Aspergillus/metabolismo , Anti-Infecciosos/farmacologia , Antibacterianos/química , Modelos Moleculares
3.
Pathogens ; 10(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34358009

RESUMO

Candida species are fungal pathogens known to cause a wide spectrum of diseases, and Candida albicans and Candida glabrata are the most common associated with invasive infections. A concerning aspect of invasive candidiasis is the emergence of resistant isolates, especially those highly resistant to fluconazole, the first choice of treatment for these infections. Fungal sphingolipids have been considered a potential target for new therapeutic approaches and some inhibitors have already been tested against pathogenic fungi. The present study therefore aimed to evaluate the action of two sphingolipid synthesis inhibitors, aureobasidin A and myriocin, against different C. albicans and C. glabrata strains, including clinical isolates resistant to fluconazole. Susceptibility tests of aureobasidin A and myriocin were performed using CLSI protocols, and their interaction with fluconazole was evaluated by a checkerboard protocol. All Candida strains tested were sensitive to both inhibitors. Regarding the evaluation of drug interaction, both aureobasidin A and myriocin were synergic with fluconazole, demonstrating that sphingolipid synthesis inhibition could enhance the effect of fluconazole. Thus, these results suggest that sphingolipid inhibitors in conjunction with fluconazole could be useful for treating candidiasis cases, especially those caused by fluconazole resistant isolates.

4.
Rev Iberoam Micol ; 37(3-4): 104-106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33229297

RESUMO

BACKGROUND: Mortality rate of invasive Candida infections is raising mainly amongst immunocompromised patients. These infections are hard-to-treat mainly due to the increasing incidence of resistance. The overexpression of ATP-binding cassette and major facilitator superfamily transporters is the main responsible for the failure of antifungal therapies. In a Saccharomyces cerevisiae model, ß-lapachone inhibited Pdr5p, a transporter homologous to those found in Candida albicans. AIMS: To determine whether ß-lapachone reverses the resistance phenotype mediated by efflux transporters in C. albicans clinical isolates. METHODS: The antifungal activity of ß-lapachone combined with fluconazole was measured by agarose chemosensitization and microdilution assays. CaCdr2p and CaMdr1p activities were evaluated through fluorescent dyes accumulation. ATPase activity was assessed using transporter-enriched plasma membranes. RESULTS: ß-lapachone reverted antifungal resistance of S. cerevisiae and C. albicans strains overexpressing CaCdr2p and CaMdr1p transporters by inhibiting these proteins activities. CaCdr2p ATPase activity was not impaired by the compound. CONCLUSIONS: ß-lapachone is a promising drug candidate to be used as an adjuvant in the treatment of candidiasis caused by fluconazole-resistant C. albicans strains.


Assuntos
Candida albicans , Fluconazol , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Fluconazol/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Naftoquinonas , Saccharomyces cerevisiae
5.
Rev. iberoam. micol ; 37(3/4): 104-106, jul.-oct. 2020. tab
Artigo em Inglês | IBECS | ID: ibc-200362

RESUMO

BACKGROUND: Mortality rate of invasive Candida infections is raising mainly amongst immunocompromised patients. These infections are hard-to-treat mainly due to the increasing incidence of resistance. The overexpression of ATP-binding cassette and major facilitator superfamily transporters is the main responsible for the failure of antifungal therapies. In a Saccharomyces cerevisiae model, Beta-lapachone inhibited Pdr5p, a transporter homologous to those found in Candida albicans. AIMS: To determine whether Beta-lapachone reverses the resistance phenotype mediated by efflux transporters in C. albicans clinical isolates. METHODS: The antifungal activity of Beta-lapachone combined with fluconazole was measured by agarose chemosensitization and microdilution assays. CaCdr2p and CaMdr1p activities were evaluated through fluorescent dyes accumulation. ATPase activity was assessed using transporter-enriched plasma membranes. RESULTS: Beta-lapachone reverted antifungal resistance of S. cerevisiae and C. albicans strains overexpressing CaCdr2p and CaMdr1p transporters by inhibiting these proteins activities. CaCdr2p ATPase activity was not impaired by the compound. CONCLUSIONS: Beta-lapachone is a promising drug candidate to be used as an adjuvant in the treatment of candidiasis caused by fluconazole-resistant C. albicans strains


ANTECEDENTES: Las tasas de mortalidad de infecciones invasivas causadas por Candida están en aumento, principalmente entre los pacientes inmunocomprometidos. Estas infecciones son difíciles de tratar debido a la creciente incidencia de resistencia a los antifúngicos. La sobreexpresión de los transportadores dependientes de ATP y los de la superfamilia de facilitadores principales es el mayor responsable del fracaso de las terapias antimicóticas. En un modelo de Saccharomyces cerevisiae, la beta-lapachona inhibió Pdr5p, un transportador homólogo a los encontrados en Candida albicans. OBJETIVOS: Determinar si la beta-lapachona revierte el fenotipo de resistencia mediado por transportadores de eflujo en aislamientos clínicos de C. albicans. MÉTODOS: Se midió la actividad antifúngica de la beta-lapachona combinada con fluconazol mediante ensayos de quimiosensibilización con agarosa y microdilución. Las actividades CaCdr2p y CaMdr1p se evaluaron mediante la acumulación de colorantes fluorescentes, y la actividad de ATPasa se evaluó usando membranas plasmáticas enriquecidas con transportador. RESULTADOS: La beta-lapachona revirtió la resistencia antifúngica de las cepas de S. cerevisiae y C. albicans que sobreexpresaban los transportadores CaCdr2p y CaMdr1p al inhibir sus actividades. El compuesto no afectó la actividad ATPasa de CaCdr2p. CONCLUSIONES: La beta-lapachona es una candidata prometedora para ser utilizada como adyuvante en el tratamiento de la candidiasis causada por cepas de C. albicans resistentes al fluconazol


Assuntos
Humanos , Sinergismo Farmacológico , Fluconazol/farmacologia , Candida albicans/efeitos dos fármacos , Naftoquinonas/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Fenótipo
6.
Braz J Microbiol ; 51(3): 1051-1060, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32157667

RESUMO

OBJECTIVES: The aim of this study was to evaluate the ability of lapachones in disrupting the fungal multidrug resistance (MDR) phenotype, using a model of study which an azole-resistant Saccharomyces cerevisiae mutant strain that overexpresses the ATP-binding cassette (ABC) transporter Pdr5p. METHODS: The evaluation of the antifungal activity of lapachones and their possible synergism with fluconazole against the mutant S. cerevisiae strain was performed through broth microdilution and spot assays. Reactive oxygen species (ROS) and efflux pump activity were assessed by fluorometry. ATPase activity was evaluated by the Fiske and Subbarow method. The effect of ß-lapachone on PDR5 mRNA expression was assessed by RT-PCR. The release of hemoglobin was measured to evaluate the hemolytic activity of ß-lapachone. RESULTS: α-nor-Lapachone and ß-lapachone inhibited S. cerevisiae growth at 100 µg/ml. Only ß-lapachone enhanced the antifungal activity of fluconazole, and this combined action was inhibited by ascorbic acid. ß-Lapachone induced the production of ROS, inhibited Pdr5p-mediated efflux, and impaired Pdr5p ATPase activity. Also, ß-lapachone neither affected the expression of PDR5 nor exerted hemolytic activity. CONCLUSIONS: Data obtained indicate that ß-lapachone is able to inhibit the S. cerevisiae efflux pump Pdr5p. Since this transporter is homologous to fungal ABC transporters, further studies employing clinical isolates that overexpress these proteins will be conducted to evaluate the effect of ß-lapachone on pathogenic fungi.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/farmacologia , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Fluconazol/farmacologia , Naftoquinonas/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Azóis/farmacologia , Farmacorresistência Fúngica Múltipla/genética , Sinergismo Farmacológico , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...