Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Heliyon ; 10(11): e31721, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867964

RESUMO

This study aimed to explore more efficient ways of administering caffeine to the body by investigating the impact of caffeine on the modulation of the nervous system's activity through the analysis of electrocardiographic signals (ECG). An ECG non-linear multi-band analysis using Discrete Wavelet Transform (DWT) was employed to extract various features from healthy individuals exposed to different caffeine consumption methods: expresso coffee (EC), decaffeinated coffee (ED), Caffeine Oral Films (OF_caffeine), and placebo OF (OF_placebo). Non-linear feature distributions representing every ECG minute time series have been selected by PCA with different variance percentages to serve as inputs for 23 machine learning models in a leave-one-out cross-validation process for analyzing the behavior differences between ED/EC and OF_placebo/OF_caffeine groups, respectively, over time. The study generated 50-point accuracy curves per model, representing the discrimination power between groups throughout the 50 min. The best model accuracies for ED/EC varied between 30 and 70 %, (using the decision tree classifier) and OF_placebo/OF_caffeine ranged from 62 to 84 % (using Fine Gaussian). Notably, caffeine delivery through OFs demonstrated effective capacity compared to its placebo counterpart, as evidenced by significant differences in accuracy curves between OF_placebo/OF_caffeine. Caffeine delivery via OFs also exhibited rapid dissolution efficiency and controlled release rate over time, distinguishing it from EC. The study supports the potential of caffeine delivery through Caffeine OFs as a superior technology compared to traditional methods by means of ECG analysis. It highlights the efficiency of OFs in controlling the release of caffeine and underscores their promise for future caffeine delivery systems.

2.
Microorganisms ; 11(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894217

RESUMO

Planktonic heterotrophic prokaryotes (HProks) are a pivotal functional group in marine ecosystems and are highly sensitive to environmental variability and climate change. This study aimed to investigate the short-term effects of increasing carbon dioxide (CO2), ultraviolet radiation (UVR), and temperature on natural assemblages of HProks in the Ria Formosa coastal lagoon during winter. Two multi-stressor microcosm experiments were used to evaluate the isolated and combined effects of these environmental changes on HProk abundance, production, growth, and mortality rates. The isolated and combined effects of increased CO2 on HProks were not significant. However, HProk production, cellular activity, instantaneous growth rate, and mortality rate were negatively influenced by elevated UVR and positively influenced by warming. Stronger effects were detected on HProk mortality in relation to specific growth rate, leading to higher HProk net growth rates and abundance under elevated UVR and lower values under warming conditions.

3.
Appl Microbiol Biotechnol ; 107(11): 3621-3636, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37133800

RESUMO

Citrobacter koseri is an emerging Gram-negative bacterial pathogen, which causes urinary tract infections. We isolated and characterized a novel S16-like myovirus CKP1 (vB_CkoM_CkP1), infecting C. koseri. CkP1 has a host range covering the whole C. koseri species, i.e., all strains that were tested, but does not infect other species. Its linear 168,463-bp genome contains 291 coding sequences, sharing sequence similarity with the Salmonella phage S16. Based on surface plasmon resonance and recombinant green florescence protein fusions, the tail fiber (gp267) was shown to decorate C. koseri cells, binding with a nanomolar affinity, without the need of accessory proteins. Both phage and the tail fiber specifically bind to bacterial cells by the lipopolysaccharide polymer. We further demonstrate that CkP1 is highly stable towards different environmental conditions of pH and temperatures and is able to control C. koseri cells in urine samples. Altogether, CkP1 features optimal in vitro characteristics to be used both as a control and detection agent towards drug-resistant C. koseri infections. KEY POINTS: • CkP1 infects all C. koseri strains tested • CkP1 recognizes C. koseri lipopolysaccharide through its long tail fiber • Both phage CkP1 and its tail fiber can be used to treat or detect C. koseri pathogens.


Assuntos
Bacteriófagos , Citrobacter koseri , Bacteriófagos/genética , Citrobacter koseri/genética , Lipopolissacarídeos , Especificidade de Hospedeiro
4.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992352

RESUMO

Bacteriophages are the most diverse genetic entities on Earth. In this study, two novel bacteriophages, nACB1 (Podoviridae morphotype) and nACB2 (Myoviridae morphotype), which infect Acinetobacter beijerinckii and Acinetobacter halotolerans, respectively, were isolated from sewage samples. The genome sequences of nACB1 and nACB2 revealed that their genome sizes were 80,310 bp and 136,560 bp, respectively. Comparative analysis showed that both genomes are novel members of the Schitoviridae and the Ackermannviridae families, sharing ≤ 40% overall nucleotide identities with any other phages. Interestingly, among other genetic features, nACB1 encoded a very large RNA polymerase, while nACB2 displayed three putative depolymerases (two capsular depolymerases and one capsular esterase) encoded in tandem. This is the first report of phages infecting A. halotolerans and beijerinckii human pathogenic species. The findings regarding these two phages will allow us to further explore phage-Acinetobacter interactions and the genetic evolution for this group of phages.


Assuntos
Acinetobacter , Bacteriófagos , Humanos , Bacteriófagos/genética , Filogenia , Genoma Viral , Genômica , Acinetobacter/genética
5.
Cell Rep ; 42(2): 112074, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787741

RESUMO

Immune development is profoundly influenced by vertically transferred cues. However, little is known about how maternal innate-like lymphocytes regulate offspring immunity. Here, we show that mice born from γδ T cell-deficient (TCRδ-/-) dams display an increase in first-breath-induced inflammation, with a pulmonary milieu selectively enriched in type 2 cytokines and type 2-polarized immune cells, when compared with the progeny of γδ T cell-sufficient dams. Upon helminth infection, mice born from TCRδ-/- dams sustain an increased type 2 inflammatory response. This is independent of the genotype of the pups. Instead, the offspring of TCRδ-/- dams harbors a distinct intestinal microbiota, acquired during birth and fostering, and decreased levels of intestinal short-chain fatty acids (SCFAs), such as pentanoate and hexanoate. Importantly, exogenous SCFA supplementation inhibits type 2 innate lymphoid cell function and suppresses first-breath- and infection-induced inflammation. Taken together, our findings unravel a maternal γδ T cell-microbiota-SCFA axis regulating neonatal lung immunity.


Assuntos
Microbioma Gastrointestinal , Imunidade Inata , Animais , Camundongos , Linfócitos , Inflamação , Pulmão , Camundongos Endogâmicos C57BL
6.
Plants (Basel) ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559623

RESUMO

Coastal lagoons are among the most productive ecosystems in the world, and they provide a wide range of ecosystem services and resources. In the Ria Formosa (southern Portugal), phytoplankton production has rarely been addressed. The main goal of this study is thus to evaluate the variability of phytoplankton production and photosynthetic characteristics over the seasonal cycle and in different locations (landward, urban, intermediate, and seaward boundaries) of the Ria Formosa coastal lagoon, subjected to distinct natural and anthropogenic stressors. Primary production was evaluated using the 14C incorporation technique, and photosynthetic parameters were estimated by fitting photosynthesis-irradiance curves. Primary production showed significant seasonal variations, with higher values in the summer associated with lower euphotic depths, higher water temperatures, and higher nutrient concentrations. No spatial differences were found for primary production or photosynthetic parameters. Primary production values were lower than previous estimates, which reflects an improvement in water quality in the Ria Formosa, but values are higher than primary production estimates for other temperate coastal ecosystems, which reflects the highly productive nature of this coastal lagoon.

7.
Sci Immunol ; 7(75): eabk2541, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054336

RESUMO

Interactions between the mammalian host and commensal microbiota are enforced through a range of immune responses that confer metabolic benefits and promote tissue health and homeostasis. Immunoglobulin A (IgA) responses directly determine the composition of commensal species that colonize the intestinal tract but require substantial metabolic resources to fuel antibody production by tissue-resident plasma cells. Here, we demonstrate that IgA responses are subject to diurnal regulation over the course of a circadian day. Specifically, the magnitude of IgA secretion, as well as the transcriptome of intestinal IgA+ plasma cells, was found to exhibit rhythmicity. Oscillatory IgA responses were found to be entrained by time of feeding and were also found to be in part coordinated by the plasma cell-intrinsic circadian clock via deletion of the master clock gene Arntl. Moreover, reciprocal interactions between the host and microbiota dictated oscillatory dynamics among the commensal microbial community and its associated transcriptional and metabolic activity in an IgA-dependent manner. Together, our findings suggest that circadian networks comprising intestinal IgA, diet, and the microbiota converge to align circadian biology in the intestinal tract and to ensure host-microbial mutualism.


Assuntos
Microbiota , Simbiose , Animais , Imunoglobulina A Secretora , Intestinos , Mamíferos , Periodicidade
9.
Viruses ; 14(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215775

RESUMO

The number of sequenced Acinetobacter phage genomes in the International Nucleotide Sequence Database Collaboration has increased significantly in recent years, from 37 in 2017 to a total of 139 as of January 2021 with genome sizes ranging from 31 to 378 kb. Here, we explored the genetic diversity of the Acinetobacter phages using comparative genomics approaches that included assessment of nucleotide similarity, shared gene content, single gene phylogeny, and the network-based classification tool vConTACT2. Phages infecting Acinetobacter sp. are genetically diverse and can be grouped into 8 clusters (subfamilies) and 46 sub-clusters (genera), of which 8 represent genomic singletons (additional genera). We propose the creation of five new subfamilies and suggest a reorganisation of the genus Obolenskvirus. These results provide an updated view of the viruses infecting Acinetobacter species, providing insights into their diversity.


Assuntos
Acinetobacter/virologia , Bacteriófagos/genética , Variação Genética , Myoviridae/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Sequência de Bases , Genoma Viral , Genômica , Myoviridae/classificação , Myoviridae/isolamento & purificação , Filogenia
10.
Cancers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831012

RESUMO

The Sodium/Iodide Symporter (NIS) is responsible for the active transport of iodide into thyroid follicular cells. Differentiated thyroid carcinomas (DTCs) usually preserve the functional expression of NIS, allowing the use of radioactive iodine (RAI) as the treatment of choice for metastatic disease. However, a significant proportion of patients with advanced forms of TC become refractory to RAI therapy and no effective therapeutic alternatives are available. Impaired iodide uptake is mainly caused by the defective functional expression of NIS, and this has been associated with several pathways linked to malignant transformation. MAPK signaling has emerged as one of the main pathways implicated in thyroid tumorigenesis, and its overactivation has been associated with the downregulation of NIS expression. Thus, several strategies have been developed to target the MAPK pathway attempting to increase iodide uptake in refractory DTC. However, MAPK inhibitors have had only partial success in restoring NIS expression and, in most cases, it remained insufficient to allow effective treatment with RAI. In a previous work, we have shown that the activity of the small GTPase RAC1 has a positive impact on TSH-induced NIS expression and iodide uptake in thyroid cells. RAC1 is a downstream effector of NRAS, but not of BRAF. Therefore, we hypothesized that the positive regulation induced by RAC1 on NIS could be a relevant signaling cue in the mechanism underlying the differential response to MEK inhibitors, observed between NRAS- and BRAF-mutant tumors. In the present study, we found that the recovery of NIS expression induced through MAPK pathway inhibition can be enhanced by potentiating RAC1 activity in thyroid cell systems. The negative impact on NIS expression induced by the MAPK-activating alterations, NRAS Q61R and BRAF V600E, was partially reversed by the presence of the MEK 1/2 inhibitors AZD6244 and CH5126766. Notably, the inhibition of RAC1 signaling partially blocked the positive impact of MEK inhibition on NIS expression in NRAS Q61R cells. Conversely, the presence of active RAC1 considerably improved the rescue of NIS expression in BRAF V600E thyroid cells treated with MEK inhibitors. Overall, our data support an important role for RAC1 signaling in enhancing MAPK inhibition in the context of RAI therapy in DTC, opening new opportunities for therapeutic intervention.

11.
Nat Immunol ; 22(12): 1538-1550, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795444

RESUMO

The signals driving the adaptation of type 2 dendritic cells (DC2s) to diverse peripheral environments remain mostly undefined. We show that differentiation of CD11blo migratory DC2s-a DC2 population unique to the dermis-required IL-13 signaling dependent on the transcription factors STAT6 and KLF4, whereas DC2s in lung and small intestine were STAT6-independent. Similarly, human DC2s in skin expressed an IL-4 and IL-13 gene signature that was not found in blood, spleen and lung DCs. In mice, IL-13 was secreted homeostatically by dermal innate lymphoid cells and was independent of microbiota, TSLP or IL-33. In the absence of IL-13 signaling, dermal DC2s were stable in number but remained CD11bhi and showed defective activation in response to allergens, with diminished ability to support the development of IL-4+GATA3+ helper T cells (TH), whereas antifungal IL-17+RORγt+ TH cells were increased. Therefore, homeostatic IL-13 fosters a noninflammatory skin environment that supports allergic sensitization.


Assuntos
Comunicação Celular , Diferenciação Celular , Interleucina-13/metabolismo , Células de Langerhans/metabolismo , Pele/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo , Alérgenos/farmacologia , Animais , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Bases de Dados Genéticas , Humanos , Interleucina-13/genética , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Pele/citologia , Pele/efeitos dos fármacos , Pele/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Transcriptoma
12.
Antibiotics (Basel) ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34827242

RESUMO

Acinetobacter pittii is a species that belong to the Acinetobacter calcoaceticus-baumannii complex, increasingly recognized as major nosocomial bacterial pathogens, often associated with multiple drug-resistances. The capsule surrounding the bacteria represents a main virulence factor, helping cells avoid phage predation and host immunity. Accordingly, a better understanding of the phage infection mechanisms is required to efficiently develop phage therapy against Acinetobacter of different capsular types. Here, we report the isolation of the novel A. pittii-infecting Fri1-like phage vB_Api_3043-K38 (3043-K38) of the Podoviridae morphotype, from sewage samples. Its 41,580 bp linear double-stranded DNA genome harbours 53 open reading frames and 302 bp of terminal repeats. We show that all studied Acinetobacter Fri1-like viruses have highly similar genomes, which differentiate only at the genes coding for tailspike, likely to adapt to different host receptors. The isolated phage 3043-K38 specifically recognizes an untapped Acinetobacter K38 capsule type via a novel tailspike with K38 depolymerase activity. The recombinant K38 depolymerase region of the tailspike (center-end region) forms a thermostable trimer, and quickly degrades capsules. When the K38 depolymerase is applied to the cells, it makes them resistant to phage predation. Interestingly, while K38 depolymerase treatments do not synergize with antibiotics, it makes bacterial cells highly susceptible to the host serum complement. In summary, we characterized a novel phage-encoded K38 depolymerase, which not only advances our understanding of phage-host interactions, but could also be further explored as a new antibacterial agent against drug-resistant Acinetobacter.

13.
Cancers (Basel) ; 13(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34771624

RESUMO

The functional expression of the sodium-iodide symporter (NIS) at the membrane of differentiated thyroid cancer (DTC) cells is the cornerstone for the use of radioiodine (RAI) therapy in these malignancies. However, NIS gene expression is frequently downregulated in malignant thyroid tissue, and 30% to 50% of metastatic DTCs become refractory to RAI treatment, which dramatically decreases patient survival. Several strategies have been attempted to increase the NIS mRNA levels in refractory DTC cells, so as to re-sensitize refractory tumors to RAI. However, there are many RAI-refractory DTCs in which the NIS mRNA and protein levels are relatively abundant but only reduced levels of iodide uptake are detected, suggesting a posttranslational failure in the delivery of NIS to the plasma membrane (PM), or an impaired residency at the PM. Because little is known about the molecules and pathways regulating NIS delivery to, and residency at, the PM of thyroid cells, we here employed an intact-cell labeling/immunoprecipitation methodology to selectively purify NIS-containing macromolecular complexes from the PM. Using mass spectrometry, we characterized and compared the composition of NIS PM complexes to that of NIS complexes isolated from whole cell (WC) lysates. Applying gene ontology analysis to the obtained MS data, we found that while both the PM-NIS and WC-NIS datasets had in common a considerable number of proteins involved in vesicle transport and protein trafficking, the NIS PM complexes were particularly enriched in proteins associated with the regulation of the actin cytoskeleton. Through a systematic validation of the detected interactions by co-immunoprecipitation and Western blot, followed by the biochemical and functional characterization of the contribution of each interactor to NIS PM residency and iodide uptake, we were able to identify a pathway by which the PM localization and function of NIS depends on its binding to SRC kinase, which leads to the recruitment and activation of the small GTPase RAC1. RAC1 signals through PAK1 and PIP5K to promote ARP2/3-mediated actin polymerization, and the recruitment and binding of the actin anchoring protein EZRIN to NIS, promoting its residency and function at the PM of normal and TC cells. Besides providing novel insights into the regulation of NIS localization and function at the PM of TC cells, our results open new venues for therapeutic intervention in TC, namely the possibility of modulating abnormal SRC signaling in refractory TC from a proliferative/invasive effect to the re-sensitization of these tumors to RAI therapy by inducing NIS retention at the PM.

14.
Nature ; 597(7876): 410-414, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34408322

RESUMO

Signals from sympathetic neurons and immune cells regulate adipocytes and thereby contribute to fat tissue biology. Interactions between the nervous and immune systems have recently emerged as important regulators of host defence and inflammation1-4. Nevertheless, it is unclear whether neuronal and immune cells co-operate in brain-body axes to orchestrate metabolism and obesity. Here we describe a neuro-mesenchymal unit that controls group 2 innate lymphoid cells (ILC2s), adipose tissue physiology, metabolism and obesity via a brain-adipose circuit. We found that sympathetic nerve terminals act on neighbouring adipose mesenchymal cells via the ß2-adrenergic receptor to control the expression of glial-derived neurotrophic factor (GDNF) and the activity of ILC2s in gonadal fat. Accordingly, ILC2-autonomous manipulation of the GDNF receptor machinery led to alterations in ILC2 function, energy expenditure, insulin resistance and propensity to obesity. Retrograde tracing and chemical, surgical and chemogenetic manipulations identified a sympathetic aorticorenal circuit that modulates ILC2s in gonadal fat and connects to higher-order brain areas, including the paraventricular nucleus of the hypothalamus. Our results identify a neuro-mesenchymal unit that translates cues from long-range neuronal circuitry into adipose-resident ILC2 function, thereby shaping host metabolism and obesity.


Assuntos
Tecido Adiposo/inervação , Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Imunidade Inata/imunologia , Mesoderma/citologia , Vias Neurais , Neurônios/citologia , Obesidade/metabolismo , Tecido Adiposo/citologia , Animais , Encéfalo/citologia , Sinais (Psicologia) , Citocinas/metabolismo , Metabolismo Energético , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Gônadas/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/metabolismo
15.
Eat Weight Disord ; 26(3): 789-795, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32356144

RESUMO

PURPOSE: Disordered eating symptoms and a high prevalence of orthorexia nervosa can be found in yoga practitioners. Given that yoga is increasingly used as a complementary treatment for eating disorders (ED), understanding the relationship between yoga practice and the development of disordered eating is crucial to guide treatment recommendations. The goal of this work is, therefore, to study the relationships between orthorexia nervosa (ON) and potential risk factors for ON, in an international sample of experienced yoga practitioners. METHOD: An online questionnaire that included several psychometric instruments was responded by 469 yoga practitioners. Instruments used were the Teruel orthorexia scale, Yoga immersion scale, Passion scale, Frost multidimensional perfectionism scale, Self-discipline scale of NEO-PI-R, Drive for thinness scale of EDI, and Beliefs about appearance scale. Descriptive statistics, correlational analysis and multiple regression were used to evaluate relationships between ON and the other variables. RESULTS: The main predictors of orthorexia nervosa were the drive for thinness and a healthy orthorexia, suggesting that, like in anorexia and bulimia, orthorexic individuals are also concerned with food quantity and physical appearance, rather than just food quality. CONCLUSIONS: The potential effects of yoga on eating behaviours and attitudes of long-term practitioners, particularly the high prevalence of orthorexia nervosa and the concern for physical appearance, should be taken into consideration when using yoga as prevention or treatment for eating disorders. LEVEL OF EVIDENCE: Level V, descriptive cross-sectional study.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Yoga , Atitude , Estudos Transversais , Transtornos da Alimentação e da Ingestão de Alimentos/terapia , Humanos , Personalidade
16.
Front Immunol ; 11: 116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117267

RESUMO

Recent years have seen a revolution in our understanding of how cells of the immune system are modulated and regulated not only via complex interactions with other immune cells, but also through a range of potent inputs derived from diverse and varied biological systems. Within complex tissue environments, such as the gastrointestinal tract and lung, these systems act to orchestrate and temporally align immune responses, regulate cellular function, and ensure tissue homeostasis and protective immunity. Group 3 Innate Lymphoid Cells (ILC3s) are key sentinels of barrier tissue homeostasis and critical regulators of host-commensal mutualism-and respond rapidly to damage, inflammation and infection to restore tissue health. Recent findings place ILC3s as strategic integrators of environmental signals. As a consequence, ILC3s are ideally positioned to detect perturbations in cues derived from the environment-such as the diet and microbiota-as well as signals produced by the host nervous, endocrine and circadian systems. Together these cues act in concert to induce ILC3 effector function, and form critical sensory circuits that continually function to reinforce tissue homeostasis. In this review we will take a holistic, organismal view of ILC3 biology and explore the tissue sensory circuits that regulate ILC3 function and align ILC3 responses with changes within the intestinal environment.


Assuntos
Microbioma Gastrointestinal/imunologia , Homeostase/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Imunidade Adaptativa/imunologia , Relógios Circadianos/imunologia , Dieta , Humanos , Fenômenos do Sistema Imunitário , Inflamação/imunologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Neuroimunomodulação/imunologia
17.
PLoS One ; 15(2): e0228794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32049985

RESUMO

The sodium-iodide symporter (NIS) mediates transport of iodide across the basolateral membrane of thyroid cells. NIS expression in thyroid cancer (TC) cells allows the use of radioactive iodine (RAI) as a diagnostic and therapeutic tool, being RAI therapy the systemic treatment of choice for metastatic disease. Still, a significant proportion of patients with advanced TC lose the ability to respond to RAI therapy and no effective alternative therapies are available. Defective NIS expression is the main reason for impaired iodide uptake in TC and NIS downregulation has been associated with several pathways linked to malignant transformation. NF-κB signaling is one of the pathways associated with TC. Interestingly, NIS expression can be negatively regulated by TNF-α, a bona fide activator of NF-κB with a central role in thyroid autoimmunity. This prompted us to clarify NF-kB's role in this process. We confirmed that TNF-α leads to downregulation of TSH-induced NIS expression in non-neoplastic thyroid follicular cell-derived models. Notably, a similar effect was observed when NF-κB activation was triggered independently of ligand-receptor specificity, using phorbol-myristate-acetate (PMA). TNF-α and PMA downregulation of NIS expression was reverted when NF-κB-dependent transcription was blocked, demonstrating the requirement for NF-kB activity. Additionally, TNF-α and PMA were shown to have a negative impact on TSH-induced iodide uptake, consistent with the observed transcriptional downregulation of NIS. Our data support the involvement of NF-κB-directed transcription in the modulation of NIS expression, where up- or down-regulation of NIS depends on the combined output to NF-κB of several converging pathways. A better understanding of the mechanisms underlying NIS expression in the context of normal thyroid physiology may guide the development of pharmacological strategies to increase the efficiency of iodide uptake. Such strategies would be extremely useful in improving the response to RAI therapy in refractory-TC.


Assuntos
Regulação para Baixo/efeitos dos fármacos , NF-kappa B/metabolismo , Simportadores/genética , Glândula Tireoide/citologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Ratos
18.
19.
J Mol Endocrinol ; 63(4): 309-320, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31590142

RESUMO

Thyroid cancer (TC) is the most common endocrine malignancy. The sodium-iodide symporter (NIS), responsible for active transport of iodide into thyroid cells, allows the use of radioactive iodine (RAI) as the systemic treatment of choice for TC metastatic disease. Still, patients with advanced forms of TC often lose the ability to respond to RAI therapy, which results in worse survival rates. We have shown that the overexpression of RAC1b, a tumor-related RAC1 splice variant, is associated with less favorable clinical outcomes in differentiated TCs derived from the follicular epithelial (DTCs). RAC1b overexpression is also significantly associated with the presence of MAPK-activating BRAFV600E mutation, which has been previously implicated in the loss of NIS expression. Here, we show that increased RAC1b levels are associated with NIS downregulation in DTCs and demonstrate that ectopic overexpression of RAC1b in non-transformed thyroid cells is sufficient to decrease TSH-induced NIS expression, antagonizing the positive effect of the canonically spliced RAC1 GTPase. Moreover, we clearly document for the first time in thyroid cells that both NIS expression and iodide uptake are hampered by RAC1 inhibition, highlighting the role of RAC1 in promoting TSH-induced NIS expression. Our findings support a role for RAC1 and RAC1b signaling in the regulation of NIS expression in thyroid cells and suggest that RAC1b in cooperation with other cancer-associated signaling cues may be implicated in the response of DTCs to RAI therapy.


Assuntos
Regulação da Expressão Gênica , Simportadores/genética , Glândula Tireoide/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Bases de Dados Genéticas , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais
20.
Nature ; 574(7777): 254-258, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534216

RESUMO

Group 3 innate lymphoid cells (ILC3s) are major regulators of inflammation, infection, microbiota composition and metabolism1. ILC3s and neuronal cells have been shown to interact at discrete mucosal locations to steer mucosal defence2,3. Nevertheless, it is unclear whether neuroimmune circuits operate at an organismal level, integrating extrinsic environmental signals to orchestrate ILC3 responses. Here we show that light-entrained and brain-tuned circadian circuits regulate enteric ILC3s, intestinal homeostasis, gut defence and host lipid metabolism in mice. We found that enteric ILC3s display circadian expression of clock genes and ILC3-related transcription factors. ILC3-autonomous ablation of the circadian regulator Arntl led to disrupted gut ILC3 homeostasis, impaired epithelial reactivity, a deregulated microbiome, increased susceptibility to bowel infection and disrupted lipid metabolism. Loss of ILC3-intrinsic Arntl shaped the gut 'postcode receptors' of ILC3s. Strikingly, light-dark cycles, feeding rhythms and microbial cues differentially regulated ILC3 clocks, with light signals being the major entraining cues of ILC3s. Accordingly, surgically or genetically induced deregulation of brain rhythmicity led to disrupted circadian ILC3 oscillations, a deregulated microbiome and altered lipid metabolism. Our work reveals a circadian circuitry that translates environmental light cues into enteric ILC3s, shaping intestinal health, metabolism and organismal homeostasis.


Assuntos
Encéfalo/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Homeostase/efeitos da radiação , Intestinos/imunologia , Intestinos/efeitos da radiação , Luz , Linfócitos/imunologia , Linfócitos/efeitos da radiação , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Relógios Biológicos/genética , Relógios Biológicos/efeitos da radiação , Encéfalo/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/imunologia , Ritmo Circadiano/fisiologia , Sinais (Psicologia) , Comportamento Alimentar/efeitos da radiação , Feminino , Microbioma Gastrointestinal/efeitos da radiação , Imunidade Inata/efeitos da radiação , Intestinos/citologia , Metabolismo dos Lipídeos , Linfócitos/metabolismo , Masculino , Camundongos , Fotoperíodo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...