Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11458, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454229

RESUMO

During embryonic development, heterozygous mutant kreisler mice undergo ectopic expression of the Hoxa3 gene in the rostral hindbrain, affecting the opioid and noradrenergic systems. In this model, we have investigated behavioral and cognitive processes in their adulthood. We confirmed that pontine and locus coeruleus neuronal projections are impaired, by using startle and pain tests and by analyzing immunohistochemical localization of tyrosine hydroxylase. Our results showed that, even if kreisler mice are able to generate eyelid reflex responses, there are differences with wild-types in the first component of the response (R1), modulated by the noradrenergic system. The acquisition of conditioned motor responses is impaired in kreisler mice when using the trace but not the delay paradigm, suggesting a functional impairment in the hippocampus, subsequently confirmed by reduced quantification of alpha2a receptor mRNA expression in this area but not in the cerebellum. Moreover, we demonstrate the involvement of adrenergic projection in eyelid classical conditioning, as clonidine prevents the appearance of eyelid conditioned responses in wild-type mice. In addition, hippocampal motor learning ability was restored in kreisler mice by administration of adrenergic antagonist drugs, and a synergistic effect was observed following simultaneous administration of idazoxan and naloxone.


Assuntos
Condicionamento Clássico , Condicionamento Palpebral , Camundongos , Animais , Condicionamento Clássico/fisiologia , Neurônios/fisiologia , Condicionamento Palpebral/fisiologia , Pálpebras , Rombencéfalo/fisiologia , Proteínas de Homeodomínio
2.
Neurosci Lett ; 739: 135439, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33132176

RESUMO

It has been reported that the Gonadotropin-releasing hormone (GnRH) and its agonist leuprolide acetate (LA) can act as promoters of nerve regeneration. The aim of this study is to evaluate the effect of LA in a complete transection model. Sciatic nerve injury (SNI) was performed using a complete nerve transection and immediately repaired by epineural sutures. Rats were divided into three groups: SHAM, SNI treated with LA (SNI + LA) or saline solution (SNI + SS) for 5 weeks. Sciatic nerve regeneration was evaluated by kinematic gait analyzes, electrophysiological, morphological and biochemical tests. SNI + LA group had a functional recovery in kinematic gait, an increase in ankle angle value and a faster walking speed, compound muscle action potential amplitude, nerve conduction velocity (NCV). Furthermore, the number of myelinated axons and microtubule-associated protein 2 (MAP-2) expression were also higher compared to SS group. In conclusion, LA treatment improves of gait, walking speed, NCV, axons morphometry and MAP-2 expression in rats with sciatic nerve complete transection. These results suggest that LA can be a potential treatment for peripheral nerve injuries.


Assuntos
Hormônio Liberador de Gonadotropina/agonistas , Leuprolida/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Locomoção/efeitos dos fármacos , Masculino , Traumatismos dos Nervos Periféricos/prevenção & controle , Ratos Wistar , Nervo Isquiático/patologia
3.
J Clin Med ; 8(9)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480808

RESUMO

Fatty acids and glucose are the main bioenergetic substrates in mammals. Impairment of mitochondrial fatty acid oxidation causes mitochondrial myopathy leading to decreased physical performance. Here, we report that haploinsufficiency of ADCK2, a member of the aarF domain-containing mitochondrial protein kinase family, in human is associated with liver dysfunction and severe mitochondrial myopathy with lipid droplets in skeletal muscle. In order to better understand the etiology of this rare disorder, we generated a heterozygous Adck2 knockout mouse model to perform in vivo and cellular studies using integrated analysis of physiological and omics data (transcriptomics-metabolomics). The data showed that Adck2+/- mice exhibited impaired fatty acid oxidation, liver dysfunction, and mitochondrial myopathy in skeletal muscle resulting in lower physical performance. Significant decrease in Coenzyme Q (CoQ) biosynthesis was observed and supplementation with CoQ partially rescued the phenotype both in the human subject and mouse model. These results indicate that ADCK2 is involved in organismal fatty acid metabolism and in CoQ biosynthesis in skeletal muscle. We propose that patients with isolated myopathies and myopathies involving lipid accumulation be tested for possible ADCK2 defect as they are likely to be responsive to CoQ supplementation.

4.
PLoS One ; 9(12): e114869, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531525

RESUMO

During the development of the nervous system, the perinatal period is particularly sensitive as neuronal connections are still forming in the brain of the neonate. Alpha2-adrenergic receptors are overexpressed temporarily in proliferative zones in the developing brain, reaching a peak during the first postnatal week of life. Both stimulation and blocking of these receptors during this period alter the development of neural circuits, affecting synaptic connectivity and neuronal responses. They even affect motor and cognitive skills later on in the adult. It's especially important to look for the early neurological consequences resulting from such modifications, because they may go unnoticed. The main objective of the present study has been to reaffirm the importance of the maturation of alpha-adrenergic system in mice, by carrying out a comprehensive examination of motor, behavioral and cognitive effects in neonates, during early postnatal development, following chronic administration of the drug Clonidine, an alpha2 adrenergic system agonist. Our study shows that mice treated postnatally with clonidine present a temporal delay in the appearance of developmental markers, a slow execution of vestibular reflexes during first postnatal week of life and a blockade of the short term memory in the novel object recognition task. Shortly after the treatment the startle response is hyperreactive.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Clonidina/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Manejo da Dor , Reflexo de Sobressalto/efeitos dos fármacos , Nervo Vestibular/efeitos dos fármacos , Nervo Vestibular/crescimento & desenvolvimento
5.
J Neurophysiol ; 104(1): 346-65, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20410355

RESUMO

Young adult heterozygous Lurcher mice constitute an excellent model for studying the role of the cerebellar cortex in motor performance-including the acquisition of new motor abilities-because of the early postnatal degeneration of almost all of their Purkinje and granular cells. Wild-type and Lurcher mice were classically conditioned for eyelid responses using a delay paradigm with or without an electrolytic lesion in the interpositus nucleus. Although the late component of electrically evoked blink reflexes was smaller in amplitude and had a longer latency in Lurcher mice than that in controls, the two groups of animals presented similar acquisition curves for eyeblink conditioning. The lesion of the interpositus nucleus affected both groups of animals equally for the generation of reflex and conditioned eyelid responses. Furthermore, we recorded the multiunitary activity at the red and interpositus nuclei during the same type of associative learning. In both nuclei, the neural firing activity lagged the beginning of the conditioned response (determined by orbicularis oculi muscle response). Although red nucleus neurons and muscle activities presented a clear functional coupling (strong correlation and low asymmetry) across conditioning, the coupling between interpositus neurons and either red nucleus neurons or muscle activities was slightly significant (weak correlation and high asymmetry). Lurcher mice presented a nonlinear coupling (high asymmetry) between red nucleus neurons and muscle activities, with an evident compensatory adjustment in the correlation of firing between interpositus and red nuclei neurons (a coupling with low asymmetry), aimed probably at compensating the absence of cerebellar cortical neurons.


Assuntos
Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Cerebelo/patologia , Degenerações Espinocerebelares/psicologia , Algoritmos , Animais , Piscadela/fisiologia , Mapeamento Encefálico , Condicionamento Palpebral/fisiologia , Vias Eferentes/citologia , Vias Eferentes/fisiologia , Eletromiografia , Fenômenos Eletrofisiológicos , Imuno-Histoquímica , Camundongos , Camundongos Mutantes Neurológicos , Dinâmica não Linear , Músculos Oculomotores/fisiologia , Núcleo Rubro/fisiologia , Degenerações Espinocerebelares/patologia
6.
J Neurochem ; 105(3): 617-27, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18179477

RESUMO

The RIC-3 protein acts as a regulator of acetylcholine nicotinic receptor (nAChR) expression. In Xenopus laevis oocytes the human RIC-3 (hRIC-3) protein enhances expression of alpha7 receptors and abolishes expression of alpha4beta2 receptors. In vitro translation of hRIC-3 evidenced its membrane insertion but not the role as signal peptide of its first transmembrane domain (TMD). When the TMDs of hRIC-3 were substituted, its effects on nAChR expression were attenuated. A certain linker length between the TMDs was also needed for alpha7 expression enhancement but not for alpha4beta2 inhibition. A combination of increased alpha7 receptor steady state levels, facilitated transport and reduced receptor internalization appears to be responsible for the increase in alpha7 membrane expression induced by hRIC-3. Antibodies against hRIC-3 showed its expression in SH-SY5Y and PC12 cells and its induction upon differentiation. Immunohistochemistry demonstrated the presence of RIC-3 in rat brain localized, in general, in places where alpha7 nAChRs were found.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema Nervoso/metabolismo , Receptores Nicotínicos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Células COS , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Endocitose/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Oócitos , Células PC12 , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Ratos , Membranas Sinápticas/metabolismo , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
7.
Eur J Neurosci ; 25(12): 3526-36, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17610572

RESUMO

Hyperpnoeic episodic breathing (HEB), a cyclic waxing and waning of breathing, has been widely reported in pre-term neonates, patients with Joubert syndrome and adults (Cheyne-Stokes respiration) with congestive heart failure and brainstem infarction. We now provide a developmental mouse model of neonatal HEB. We used retinoic acid (RA) (0.5-10 mg/kg of maternal weight) to alter embryonic development of the respiratory neuronal network at the onset of hindbrain segmentation (7.5 days post-coitum). HEB was observed in vivo after RA treatment during post-natal days 1-7 but not in control animals. HEB persisted after reduction of the chemoafferent input by hypocapnic hyperoxia (100% O(2)). A large increase and decrease of the rhythm resembling an HEB episode was induced in vitro by stimulating the parafacial respiratory oscillator in treated but not in control neonates. Post-natal localization of the superior cerebellar peduncle and adjacent dorsal tegmentum was found to be abnormal in the pons of RA-treated juvenile mice. Thus, early developmental specifications in the rostral hindbrain are required for the development of neurones that stabilize the function of the respiratory rhythm generator, thereby preventing HEB during post-natal maturation.


Assuntos
Respiração de Cheyne-Stokes , Efeitos Tardios da Exposição Pré-Natal , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/crescimento & desenvolvimento , Tretinoína/farmacologia , Animais , Animais Recém-Nascidos , Padronização Corporal/efeitos dos fármacos , Respiração de Cheyne-Stokes/induzido quimicamente , Respiração de Cheyne-Stokes/patologia , Respiração de Cheyne-Stokes/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Controladores do Desenvolvimento/fisiologia , Hibridização In Situ , Técnicas In Vitro , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Pletismografia/métodos , Gravidez , Rombencéfalo/patologia , Rombencéfalo/ultraestrutura
8.
Eur J Neurosci ; 21(4): 979-88, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15787704

RESUMO

Adult heterozygous Lurcher mice show a degeneration of almost all Purkinje cells and 90% of the granular cells of the cerebellum, resulting in ataxia or general deficits in motor coordination. These mice are therefore an excellent model for studying the role of the cerebellar cortex in motor performance, including the acquisition of new motor abilities. The performance of 3-month-old Lurcher mice was studied in various behavioural (fall, horizontal bar, rotating cylinder, and ladder), spatial orientation (water maze) and associative learning (eyelid classical conditioning) tasks and compared with that of wild-type mice. Behavioural tasks indicated a deficit for motor abilities in Lurcher mice but with some adaptation to the tests and improvement in performance. Wild-type and Lurcher mice performed swimming equally, but the latter learned the task significantly more slowly than the former. The late component of reflex blinks was smaller in amplitude and had a longer latency in Lurcher mice than in controls. Learning curves for Lurcher mice during classical conditioning of eyelid responses were similar to controls, but the amplitude of the learned response in Lurcher mice was significantly lower. The startle response to a severe tone was similar in both control and Lurcher mice but the latter were unable to produce prepulse inhibition. These results suggest that the cerebellar cortex is not indispensable for the performance of this complete set of skeletal and facial tasks, or for the acquisition of new motor abilities, but it is for the appropriate execution and adjustment of any of these motor activities.


Assuntos
Condicionamento Clássico/fisiologia , Músculo Esquelético/fisiopatologia , Inibição Neural/fisiologia , Desempenho Psicomotor/fisiologia , Células de Purkinje/fisiologia , Reflexo Acústico/fisiologia , Estimulação Acústica/métodos , Animais , Comportamento Animal/fisiologia , Córtex Cerebelar/patologia , Doenças Cerebelares/genética , Doenças Cerebelares/fisiopatologia , Modelos Animais de Doenças , Eletromiografia/métodos , Potenciais Evocados/fisiologia , Potenciais Evocados/efeitos da radiação , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/efeitos da radiação , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Tempo de Reação/fisiologia , Comportamento Espacial/fisiologia
9.
Eur J Neurosci ; 20(7): 1945-52, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15380017

RESUMO

Transgenic mice over-expressing a mutated form of the human amyloid precursor protein (APP, 695 isoform) bearing a mutation associated with Alzheimer's disease (V642I, so-called London mutation, hereafter APPLd2) and wild-type controls were studied at age periods (3 and 10 months) prior to the overt development of neuritic amyloid plaques. Both 3- and 10-month-old APPLd2 mice had reflex eyelid responses like those of controls, but only younger mice were able to acquire a classical conditioning of eyelid responses in a trace paradigm. In vitro studies on hippocampal slices showed that 10-month-old APPLd2 mice also presented deficits in paired-pulse facilitation and long-term potentiation, but presented a normal synaptic activation of CA1 pyramidal cells by the stimulation of Schaffer collaterals. It is proposed that definite functional changes may appear well in advance of noticeable structural alterations in this animal model of Alzheimer's disease, and that specific learning tasks could have a relevant diagnostic value.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Aprendizagem por Associação/fisiologia , Animais , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Potenciais Evocados , Pálpebras/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Tempo de Reação
10.
Neurotox Res ; 6(3): 225-32, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15325961

RESUMO

The availability of transgenic mice that mimic human neurodegenerative processes has made it necessary to develop new recording and stimulating techniques capable of being applied in this species. We have studied here the motor learning and memory capabilities of wild-type and transgenic mice with deficits in cognitive functions, using classical conditioning procedures. We have developed an electrical shock/SHOCK paradigm corresponding to a trace classical conditioning; that is, a learning task involving the cerebral cortex, including the hippocampus. The conditioning procedure is a modification of the air-puff/AIR-PUFF conditioning (Gruart et al., J. Neurophysiol. 74:226, 1995). Animals were implanted with stimulating electrodes in the supraorbitary branch of the trigeminal nerve and with recording electrodes in the orbicularis oculi muscle. Computer programs were developed to quantify the appearance and evolution of eyelid conditioned responses. According to the present results, the classical conditioning of eyelid responses appears to be a suitable (associative) learning procedure to study learning capabilities in genetically-modified mice.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Camundongos Transgênicos/fisiologia , Fatores Etários , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Condicionamento Clássico/fisiologia , Estimulação Elétrica/métodos , Eletromiografia/métodos , Extinção Psicológica/fisiologia , Extinção Psicológica/efeitos da radiação , Pálpebras/fisiologia , Pálpebras/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Agonistas Nicotínicos/farmacologia , Reflexo/efeitos da radiação , Fatores de Tempo , Nervo Trigêmeo/efeitos da radiação
11.
J Chem Neuroanat ; 26(3): 209-24, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14615029

RESUMO

A large set of voltage-gated potassium channels is involved in regulating essential aspects of neuronal function in the central nervous system, thus contributing to the ability of neurons to respond to a given input. In the present study, we used immunocytochemical methods to elucidate the regional, cellular and subcellular distribution of the voltage-gated potassium channel subunit Kv1.4, a member of the Shaker subfamily, in the brain. At the light microscopic level, the Kv1.4 subunit showed a unique distribution pattern, being localized in specific neuronal populations of the rat brain. The neuronal regions expressing the highest levels of Kv1.4 protein included the cerebral cortex, the hippocampus, the posterolateral and posteromedial ventral thalamic nuclei, the dorsolateral and medial geniculate nuclei, the substantia nigra and the dorsal cochlear nucleus. The Kv1.4 subunit was also present in other neuronal populations, with different levels of Kv1.4 immunoreactivity. In all immunolabeled regions, the Kv1.4 subunit was mostly diffusely distributed and, to a lesser extent, it stained cell bodies and proximal dendrites. Furthermore, Kv1.4 immunoreactivity was also detected in nerve terminals and axonal terminal fields. At the electron microscopic level, Kv1.4 was located postsynaptically in dendritic spines and shafts at extrasynaptic sites, as well as presynaptically in axon and active zone of axon terminals, in the neocortex and hippocampus. The findings indicate that Kv1.4 channels are widely distributed in the rat brain and suggest that activation of this channel would have different modulatory effects on neuronal excitability.


Assuntos
Química Encefálica/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/fisiologia , Fatores Etários , Animais , Córtex Cerebral/química , Núcleo Coclear/química , Corpos Geniculados/química , Hipocampo/química , Imuno-Histoquímica , Canal de Potássio Kv1.4 , Masculino , Microscopia Imunoeletrônica , Neurônios/química , Neurônios/ultraestrutura , Canais de Potássio/análise , Ratos , Ratos Wistar , Substância Negra/química , Núcleos Talâmicos/química
12.
Mol Neurobiol ; 28(3): 277-94, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14709790

RESUMO

Respiration is a rhythmic motor behavior that appears in the fetus and acquires a vital importance at birth. It is generated within central pattern-generating neuronal networks of the hindbrain. This region of the brain is of particular interest since it is the most understood part with respect to the cellular and molecular mechanisms that underlie its development. Hox paralogs and Hox-regulating genes kreisler/mafB and Krox20 are required for the normal formation of rhombomeres in vertebrate embryos. From studies of rhombomeres r3 and r4, the authors review mechanisms whereby these developmental genes may govern the early embryonic development of para-facial neuronal networks and specify patterns of motor activities operating throughout life. A model whereby the regional identity of progenitor cells can be abnormally specified in r3 and r4 after a mutation of these genes is proposed. Novel neuronal circuits may develop from some of these misspecified progenitors while others are eliminated, eventually affecting respiration and survival after birth.


Assuntos
Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Centro Respiratório/embriologia , Centro Respiratório/fisiologia , Rombencéfalo/embriologia , Rombencéfalo/fisiologia , Animais , Genes Homeobox/genética , Humanos , Recém-Nascido , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Malformações do Sistema Nervoso/fisiopatologia , Centro Respiratório/citologia , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Rombencéfalo/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo
13.
Respir Physiol Neurobiol ; 131(1-2): 5-13, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12106991

RESUMO

We are investigating neuronal circuits resulting from conservative developmental mechanisms orchestrating the segmentation of the vertebrates hindbrain into compartments called rhombomeres (r). Segmentation transcription factors Hoxa1, Krox20 and kreisler are expressed in the future rhombomeres r4-r5, r3 and r5, r5-r6, respectively. In mice, the in vivo and in vitro analysis of neuronal groups after inactivation of these three genes revealed distinct postnatal respiratory phenotypes associated with defects of central respiratory controls resulting from deletion, neoformation or reconfiguration of modular circuits. In chick and mice, we have found neuronal rhythm generators that conform to the rhombomeric anatomical pattern as early as at the end of the segmentation. By isolating chick hindbrain segments in vitro, we have also identified rhombomeric motifs allowing the formation or deletion of a specific (GABAergic) rhythm-promoting module. Therefore, primordial rhombomeric organization of the hindbrain seems to determine a modular organization of the rhythmogenic network, thereby influencing later function of brainstem respiratory control networks.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Rede Nervosa/embriologia , Rede Nervosa/fisiologia , Mecânica Respiratória/genética , Animais , Embrião de Galinha , Camundongos , Camundongos Mutantes , Mecânica Respiratória/fisiologia , Rombencéfalo/embriologia , Rombencéfalo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...