Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37887813

RESUMO

Exotic tephritid incursions are of high concern to Australia's biosecurity and its horticultural industries. It is vital that Australia remains ready to respond to incursions as they arise, as an incursion of tephritid fruit fly species will result in significant economic losses. In this review, we compared Australian incursion management strategies for fruit flies with global management strategies and identified possible areas where improvements could be made in an Australian context. Overall, Australia has a good understanding of the main tephritid threats, of which Bactrocera species from across the Torres Strait (northern Australia) are of most concern. Effective tools for tephritid detection and early warning surveillance at points of entry are in place at ports and in horticultural areas Australia-wide and provide the basis for initiating biosecurity responses in the event of an incursion. Area-wide control measures used in successful eradication attempts globally are available for use in Australia. However, a specific tephritid emergency response plan identifying suitable response measures and control options for species of concern is not yet available. We have identified that Australia has the policies and management tools available to respond to an exotic tephritid incursion, but the speed at which this could be accomplished would be greatly improved by the development of species-specific emergency response plans.

2.
Insects ; 13(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35323567

RESUMO

Global markets do not tolerate the presence of fruit fly (Tephritidae) in horticultural produce. A key method of control for tephritidae pests, is the sterile insect technique (SIT). Several countries release a bisex strain, i.e., males and females, however the sterile male is the only sex which contributes to wild population declines when released en masse. In commercial orchards, there are concerns that sterile females released as part of bisex strains, may oviposit, i.e., 'sting' and cause damage to fruit, rendering it unmarketable. Australia has released a bisex strain of sterile Queensland fruit fly, Bactrocera tryoni Froggatt, for several decades to suppress wild pest populations, particularly in peri-urban and urban environments. Here, we assessed fruit damage in two commercially grown stone fruit orchards where bisex sterile B. tryoni were released, and in an orchard that did not receive sterile flies. The number of detected stings were higher in only one SIT release orchard, compared with the control; however, there was no difference between SIT and control orchards in the number of larvae detected. We showed that there is no evidence that sterile female B. tryoni released in large numbers caused stings, or damage that led to downgraded or unsaleable fruit. The bisex strain of sterile B. tryoni is recommended for use in commercial stone-fruit orchards, under the conditions in which this trial was conducted.

3.
J Econ Entomol ; 114(3): 1021-1034, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33715014

RESUMO

Tephritid fruit flies are major economic pests for fruit production and are an impediment to international trade. Different host fruits are known to vary in their suitability for fruit flies to complete their life cycle. Currently, international regulatory standards that define the likely legal host status for tephritid fruit flies categorize fruits as a natural host, a conditional host, or a nonhost. For those fruits that are natural or conditional hosts, infestation rate can vary as a spectrum ranging from highly attractive fruits supporting large numbers of fruit flies to very poor hosts supporting low numbers. Here, we propose a Host Suitability Index (HSI), which divides the host status of natural and conditional hosts into five categories based on the log infestation rate (number of flies per kilogram of fruit) ranging from very poor (<0.1), poor (0.1-1.0), moderately good (1.0-10.0), good (10-100), and very good (>100). Infestation rates may be determined by field sampling or cage infestation studies. We illustrate the concept of this index using 21 papers that examine the host status of fruits in five species of polyphagous fruit flies in the Pacific region: Bactrocera tryoni Froggatt, Bactrocera dorsalis (Hendel), Bactrocera latifrons (Hendel), Zeugodacus cucurbitae (Coquillett), and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). This general-purpose index may be useful in developing systems approaches that rely on poor host status, for determining surveillance and detection protocols for potential incursions, and to guide the appropriate regulatory response during fruit fly outbreaks.


Assuntos
Ceratitis capitata , Tephritidae , Animais , Comércio , Frutas , Internacionalidade
4.
Front Microbiol ; 11: 576156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042092

RESUMO

Larval diets used for artificial rearing can have a significant effect on insect biology. The Queensland fruit fly (aka "Qfly"), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), is one of the greatest challenges for fruit growers in Australia. The sterile insect technique (SIT) is being developed to manage outbreaks in regions that remain free of Qfly and to reduce populations in regions where this species is endemic. Factory scale rearing is essential for SIT; however, artificial larval diets are known to affect the microbiome of Qfly, which may then affect fly performance. In this study, high-throughput Illumina sequencing was used to assess the Qfly microbiome in colonies reared, for five generations from nature, on two common artificial diets (carrot and gel). At generation five (G5), the microbiome was assessed in larvae, pupae, adult males and adult females and standard fly quality control parameters were assessed together with additional performance measures of mating propensity and survival under nutritional stress. At the genus level, bacterial communities were significantly different between the colonies reared on the two larval diets. However, communities converged at Phyla to family taxonomic levels. Bacterial genera of Morganella, Citrobacter, Providencia, and Burkholderia were highly abundant in all developmental stages of Qfly reared on the gel diet, when compared to the carrot diet. Despite abundance of these genera, a greater percentage of egg hatching, heavier pupal weight and a higher percentage of fliers were found in the Qfly reared on the gel diet. Mating propensity and survival under nutritional stress was similar for adult Qfly that had been reared on the two larval diets. Overall, our findings demonstrate that the artificial larval diet strongly influences the microbiome and quality control measures of Qfly, with likely downstream effects on performance of flies released in SIT programs.

5.
PLoS One ; 15(2): e0213820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053591

RESUMO

Tephritid fruit flies are among the most destructive horticultural pests posing risks to Australia's multi-billion-dollar horticulture industry. Currently, there are 11 pest fruit fly species of economic concern in Australia. Of these, nine are native to this continent (Bactrocera aquilonis, B. bryoniae, B. halfordiae, B. jarvisi, B. kraussi, B. musae, B. neohumeralis, B. tryoni and Zeugodacus cucumis), while B. frauenfeldi and Ceratitis capitata are introduced. To varying degrees these species are costly to Australia's horticulture through in-farm management, monitoring to demonstrate pest freedom, quarantine and trade restrictions, and crop losses. Here, we used a common species distribution model, Maxent, to assess climate suitability for these 11 species under baseline (1960-1990) and future climate scenarios for Australia. Projections indicate that the Wet Tropics is likely to be vulnerable to all 11 species until at least 2070, with the east coast of Australia also likely to remain vulnerable to multiple species. While the Cape York Peninsula and Northern Territory are projected to have suitable climate for numerous species, extrapolation to novel climates in these areas decreases confidence in model projections. The climate suitability of major horticulture areas currently in eastern Queensland, southern-central New South Wales and southern Victoria to these pests may increase as climate changes. By highlighting areas at risk of pest range expansion in the future our study may guide Australia's horticulture industry in developing effective monitoring and management strategies.


Assuntos
Distribuição Animal , Mudança Climática , Monitorização de Parâmetros Ecológicos/métodos , Modelos Estatísticos , Tephritidae , Animais , Austrália , Geografia , Horticultura/métodos , Controle de Pragas/métodos , Estações do Ano , Análise Espacial , Temperatura
6.
Sci Rep ; 8(1): 6118, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651148

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

7.
Sci Rep ; 7(1): 13025, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026169

RESUMO

Anthropogenic climate change is a major factor driving shifts in the distributions of pests and invasive species. The Queensland fruit fly, Bactrocera tryoni Froggatt (Qfly), is the most economically damaging insect pest of Australia's horticultural industry, and its management is a key priority for plant protection and biosecurity. Identifying the extent to which climate change may alter the distribution of suitable habitat for Qfly is important for the development and continuation of effective monitoring programs, phytosanitary measures, and management strategies. We used Maxent, a species distribution model, to map suitable habitat for Qfly under current climate, and six climate scenarios for 2030, 2050 and 2070. Our results highlight that south-western Australia, northern regions of the Northern Territory, eastern Queensland, and much of south-eastern Australia are currently suitable for Qfly. This includes southern Victoria and eastern Tasmania, which are currently free of breeding populations. There is substantial agreement across future climate scenarios that most areas currently suitable will remain so until at least 2070. Our projections provide an initial estimate of the potential exposure of Australia's horticultural industry to Qfly as climate changes, highlighting the need for long-term vigilance across southern Australia to prevent further range expansion of this species.


Assuntos
Mudança Climática , Ecossistema , Tephritidae/fisiologia , Animais , Geografia , Queensland
8.
J Econ Entomol ; 110(6): 2459-2465, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29040591

RESUMO

Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), commonly called 'Queensland fruit fly' in Australia, and Mediterranean fruit fly (Ceratitis capitata Wiedemann) (Diptera: Tephritidae) are the two most economically important fruit fly in Australia with B. tryoni in the east and Mediterranean fruit fly in the west. The two species coexisted for several decades, but it is believed that B. tryoni displaced Mediterranean fruit fly. In southeastern Australia, this was deemed inadequate for export market access, and a large fruit fly free zone (fruit fly exclusion zone) was developed in 1996 where B. tryoni was eradicated by each state department in their portion of the zone. This zone caused an artificial restricted distribution of B. tryoni. When the fruit fly exclusion zone was withdrawn in Victoria and New South Wales in 2013, B. tryoni became endemic once again in this area and the national distribution of B. tryoni changed. For export markets, B. tryoni is now deemed endemic to all eastern Australian states, except for the Greater Sunraysia Pest-Free Area. All regulatory controls have been removed between eastern states, except for some small zones, subject to domestic market access requirements. The eastern Australian states now form a B. tryoni endemic trading group or block. All Australian states and territories maintain legislation to regulate the movement of potentially infested host fruit into their states. In particular, eastern states remain active and regulate the entry of commodities possibly infested with Mediterranean fruit fly. The combination of regulatory controls limits the chances of Mediterranean fruit fly entering eastern states, and if it did, Mediterranean fruit fly is unlikely to establish in the opposition to a well-established B. tryoni population.


Assuntos
Distribuição Animal , Tephritidae/fisiologia , Animais , Austrália , Ceratitis capitata/fisiologia , Especificidade da Espécie
9.
Pest Manag Sci ; 72(3): 456-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25204807

RESUMO

BACKGROUND: The number of insect eradication programmes is rising in response to globalisation. A database of arthropod and plant pathogen eradications covers 1050 incursion responses, with 928 eradication programmes on 299 pest and disease taxa in 104 countries (global eradication database b3.net.nz/gerda). METHODS: A subset of the database was assembled with 211 eradication or response programmes against 17 species of fruit flies (Tephritidae) in 31 countries, in order to investigate factors affecting the outcome. RESULTS: The failure rate for fruit fly eradication programmes was about 7%, with 0% for Ceratitis capitata (n = 85 programmes) and 0% for two Anastrepha species (n = 12 programmes), but 12% for 13 Bactrocera species (n = 108 programmes). A number of intended eradication programmes against long-established populations were not initiated because of cost and other considerations, or evolved during the planning phase into suppression programmes. Cost was dependent on area, ranged from $US 0.1 million to $US 240 million and averaged about $US 12 million (normalised to $US in 2012). In addition to the routine use of surveillance networks, quarantine and fruit destruction, the key tactics used in eradication programmes were male annihilation, protein bait sprays (which can attract both sexes), fruit destruction and the sterile insect technique. CONCLUSIONS: Eradication success generally required the combination of several tactics applied on an area-wide basis. Because the likelihood of eradication declines with an increase in the area infested, it pays to invest in effective surveillance networks that allow early detection and delimitation while invading populations are small, thereby greatly favouring eradication success.


Assuntos
Controle de Insetos/métodos , Tephritidae , Animais , Ceratitis capitata , Bases de Dados Factuais , Controle de Insetos/economia , Controle de Insetos/instrumentação , Especificidade da Espécie
10.
J Econ Entomol ; 108(3): 1176-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26470243

RESUMO

In Australia, tephritids are usually attracted to either cuelure or methyl eugenol. Methyl eugenol is a very effective lure, but cuelure is less effective likely due to low volatility. A new formate analogue of cuelure, melolure, has increased volatility, resulting in improved efficacy with the melon fruit fly, Bactrocera cucurbitae Coquillett. We tested the efficacy of melolure with fruit fly species in Sydney as part of the National Exotic Fruit Fly Monitoring programme. This monitoring programme has 71 trap sites across Sydney, with each trap site comprising separate Lynfield traps containing either cuelure, methyl eugenol, or capilure lure. In 2008, an additional Lynfield trap with melolure plugs was added to seven sites. In 2009 and 2010, an additional Lynfield trap with melolure wicks was added to 11 trap sites and traps were monitored fortnightly for 2 yr. Capture rates for melolure traps were similar to cuelure traps for Dacus absonifacies (May) and Dacus aequalis (Coquillet), but melolure traps consistently caught fewer Bactrocera tryoni (Froggatt) than cuelure traps. However, trap sites with both a cuelure and melolure traps had increased capture rates for D. absonifacies and D. aequalis, and a marginally significant increase for B. tryoni. Melolure plugs were less effective than melolure wicks, but this effect may be related to lure concentration. The broader Bactrocera group species were attracted more to cuelure than melolure while the Dacus group species were attracted more to melolure than cuelure. There is no benefit in switching from cuelure to melolure to monitor B. tryoni, the most important fruit fly pest in Australia.


Assuntos
Controle Biológico de Vetores , Feromônios/farmacologia , Tephritidae/efeitos dos fármacos , Animais , New South Wales , Especificidade da Espécie
11.
J Econ Entomol ; 107(6): 2103-6, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-26470075

RESUMO

The sterile insect technique is used to manage or control fruit flies throughout the world. The technique relies on large scale production before delivery to release managers. As part of the mass production phase, there are many quality control tests to demonstrate and maintain high quality pupae and flies. One highly desirable characteristic is adults with a long life so that these adults can reach sexual maturity and sterile males mate with wild fertile flies in the field and thus produce no viable offspring. Originally longevity was assessed allowing adults to have unlimited access to food and water. As quality and longevity increased, this methodology added significantly to workload and space demands and many facilities moved to testing longevity under stress where no food or water was provided. Here we examined >27,000 Queensland fruit fly Bactrocera tryoni (Froggatt) from 160 weekly production batches from July 2004 to October 2009 where flies were not provided food or water. The mean longevity was 54.4 ± SE hours. Longevity was significantly shorter from August to March, and the longevity was significantly longer in June. Longevity was not related to pupal weight, contrary to expectations. Weights were significantly lower in June and highest in summer.


Assuntos
Longevidade , Controle Biológico de Vetores/normas , Estresse Fisiológico , Tephritidae/fisiologia , Animais , Feminino , Masculino , Pupa , Controle de Qualidade , Razão de Masculinidade
12.
Pest Manag Sci ; 70(2): 304-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23589415

RESUMO

BACKGROUND: The Sterile Insect Technique (SIT) requires vast numbers of consistently high quality insects to be produced over long periods. Quality control (QC) procedures are critical to effective SIT, both providing quality assurance and warning of operational deficiencies. We here present a potential new QC assay for mass rearing of Queensland fruit flies (Bactrocera tryoni Froggatt) for SIT; locomotor activity monitoring. We investigated whether automated locomotor activity monitors (LAMs) that simply detect how often a fly passes an infrared sensor in a glass tube might provide similar insights but with much greater economy. RESULTS: Activity levels were generally lower for females than for males, and declined over five days in the monitor for both sexes. Female activity levels were not affected by irradiation, but males irradiated at 60 or 70 Gy had reduced activity levels compared with unirradiated controls. We also found some evidence that mild heat shock of pupae results in adults with reduced activity. CONCLUSION: LAM offers a convenient, effective and economical assay to probe such changes.


Assuntos
Raios gama , Controle de Insetos/normas , Atividade Motora/efeitos da radiação , Tephritidae/fisiologia , Tephritidae/efeitos da radiação , Animais , Automação , Relação Dose-Resposta à Radiação , Feminino , Resposta ao Choque Térmico/efeitos da radiação , Masculino , Controle de Qualidade , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...