Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 9(90): eadk5183, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809995

RESUMO

The advancement of motor augmentation and the broader domain of human-machine interaction rely on a seamless integration with users' physical and cognitive capabilities. These considerations may markedly fluctuate among individuals on the basis of their age, form, and abilities. There is a need to develop a standard for considering these diversity needs and preferences to guide technological development, and large-scale testing can provide us with evidence for such considerations. Public engagement events provide an important opportunity to build a bidirectional discourse with potential users for the codevelopment of inclusive and accessible technologies. We exhibited the Third Thumb, a hand augmentation device, at a public engagement event and tested participants from the general public, who are often not involved in such early technological development of wearable robotic technology. We focused on wearability (fit and control), ability to successfully operate the device, and ability levels across diversity factors relevant for physical technologies (gender, handedness, and age). Our inclusive design was successful in 99.3% of our diverse sample of 596 individuals tested (age range from 3 to 96 years). Ninety-eight percent of participants were further able to successfully manipulate objects using the extra thumb during the first minute of use, with no significant influences of gender, handedness, or affinity for hobbies involving the hands. Performance was generally poorer among younger children (aged ≤11 years). Although older and younger adults performed the task comparably, we identified age costs with the older adults. Our findings offer tangible demonstration of the initial usability of the Third Thumb for a broad demographic.


Assuntos
Mãos , Robótica , Humanos , Feminino , Masculino , Adulto , Idoso , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Criança , Mãos/fisiologia , Idoso de 80 Anos ou mais , Pré-Escolar , Robótica/instrumentação , Desenho de Equipamento , Sistemas Homem-Máquina , Dispositivos Eletrônicos Vestíveis , Polegar
2.
Sci Robot ; 8(85): eadh1438, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091424

RESUMO

Extra robotic arms (XRAs) are gaining interest in neuroscience and robotics, offering potential tools for daily activities. However, this compelling opportunity poses new challenges for sensorimotor control strategies and human-machine interfaces (HMIs). A key unsolved challenge is allowing users to proficiently control XRAs without hindering their existing functions. To address this, we propose a pipeline to identify suitable HMIs given a defined task to accomplish with the XRA. Following such a scheme, we assessed a multimodal motor HMI based on gaze detection and diaphragmatic respiration in a purposely designed modular neurorobotic platform integrating virtual reality and a bilateral upper limb exoskeleton. Our results show that the proposed HMI does not interfere with speaking or visual exploration and that it can be used to control an extra virtual arm independently from the biological ones or in coordination with them. Participants showed significant improvements in performance with daily training and retention of learning, with no further improvements when artificial haptic feedback was provided. As a final proof of concept, naïve and experienced participants used a simplified version of the HMI to control a wearable XRA. Our analysis indicates how the presented HMI can be effectively used to control XRAs. The observation that experienced users achieved a success rate 22.2% higher than that of naïve users, combined with the result that naïve users showed average success rates of 74% when they first engaged with the system, endorses the viability of both the virtual reality-based testing and training and the proposed pipeline.


Assuntos
Exoesqueleto Energizado , Robótica , Realidade Virtual , Humanos , Extremidade Superior , Aprendizagem
3.
Heliyon ; 8(11): e11764, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36468121

RESUMO

Task-specific training constitutes a core element for evidence-based rehabilitation strategies targeted at improving upper extremity activity after stroke. Its combination with additional treatment strategies and neurotechnology-based solutions could further improve patients' outcomes. Here, we studied the effect of gamified robot-assisted upper limb motor training on motor performance, skill learning, and transfer with respect to a non-gamified control condition with a group of chronic stroke survivors. The results suggest that a gamified training strategy results in more controlled motor performance during the training phase, which is characterized by a higher accuracy (lower deviance), higher smoothness (lower jerk), but slower speed. The responder analyses indicated that mildly impaired patients benefited most from the gamification approach. In conclusion, gamified robot-assisted motor training, which is personalized to the individual capabilities of a patient, constitutes a promising investigational strategy for further improving motor performance after a stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...