Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 4: 5539, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24986213

RESUMO

Ribonucleotide reductases (RNRs) catalyze the formation of 2'-deoxyribonucleotides. Each polypeptide of the large subunit of eukaryotic RNRs contains two redox-active cysteine pairs, one in the active site and the other at the C-terminus. In each catalytic cycle, the active-site disulfide is reduced by the C-terminal cysteine pair, which in turn is reduced by thioredoxins or glutaredoxins. Dithiols such as DTT are used in RNR studies instead of the thioredoxin or glutaredoxin systems. DTT can directly reduce the disulfide in the active site and does not require the C-terminal cysteines for RNR activity. Here we demonstrate that the phosphines tris(2-carboxyethyl)phosphine (TCEP) and tris(3-hydroxypropyl)phosphine (THP) are efficient non-thiol RNR reductants, but in contrast to the dithiols DTT, bis(2-mercaptoethyl)sulfone (BMS), and (S)-(1,4-dithiobutyl)-2-amine (DTBA) they act specifically via the C-terminal disulfide in a manner similar to thioredoxin and glutaredoxin. The simultaneous use of phosphines and dithiols results in ~3-fold higher activity compared to what is achieved when either type of reductant is used alone. This surprising effect can be explained by the concerted action of dithiols on the active-site cysteines and phosphines on the C-terminal cysteines. As non-thiol and non-protein reductants, phosphines can be used to differentiate between the redox-active cysteine pairs in RNRs.


Assuntos
Cisteína/química , Glutarredoxinas/química , Fosfinas/química , Ribonucleotídeo Redutases/química , Tiorredoxinas/química , Animais , Sítios de Ligação , Ativação Enzimática , Camundongos , Oxirredução , Ligação Proteica
3.
Biochemistry ; 48(27): 6532-9, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19492792

RESUMO

Class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (C. tm.) lacks the tyrosyl radical and uses a Mn(IV)-Fe(III) cluster for cysteinyl radical initiation in the large subunit. Here we investigated and compared the metal content and specific activity of the C. tm. wild-type R2 protein and its F127Y mutant, as well as the native mouse R2 protein and its Y177F mutant, all produced as recombinant proteins in Escherichia coli. Our results indicate that the affinity of the RNR R2 proteins for binding metals is determined by the nature of one specific residue in the vicinity of the dimetal site, namely the one that carries the tyrosyl radical in class Ia and Ib R2 proteins. In mouse R2, this tyrosyl residue is crucial for the activity of the enzyme, but in C. tm., the corresponding phenylalanine plays no obvious role in activation or catalysis. However, for the C. tm. wild-type R2 protein to bind Mn and gain high specific activity, there seems to be a strong preference for F over Y at this position. In studies of mouse RNR, we find that the native R2 protein does not bind Mn whereas its Y177F mutant incorporates a significant amount of Mn and exhibits 1.4% of native mouse RNR activity. The observation suggests that a manganese-iron cofactor is associated with the weak activity in this protein.


Assuntos
Ferro/metabolismo , Manganês/metabolismo , Mutação , Ribonucleotídeo Redutases/metabolismo , Animais , Chlamydia trachomatis/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/química , Manganês/química , Camundongos , Ligação Proteica , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética , Espectrometria de Fluorescência
4.
J Mol Biol ; 359(2): 365-77, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16631785

RESUMO

Ribonucleotide reductase is an indispensable enzyme for all cells, since it catalyses the biosynthesis of the precursors necessary for both building and repairing DNA. The ribonucleotide reductase class I enzymes, present in all mammals as well as in many prokaryotes and DNA viruses, are composed mostly of two homodimeric proteins, R1 and R2. The reaction involves long-range radical transfer between the two proteins. Here, we present the first crystal structure of a ribonucleotide reductase R1/R2 holocomplex. The biological relevance of this complex is based on the binding of the R2 C terminus in the hydrophobic cleft of R1, an interaction proven to be crucial for enzyme activity, and by the fact that all conserved amino acid residues in R2 are facing the R1 active sites. We suggest that the asymmetric R1/R2 complex observed in the 4A crystal structure of Salmonella typhimurium ribonucleotide reductase represents an intermediate stage in the reaction cycle, and at the moment of reaction the homodimers transiently form a tight symmetric complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estrutura Quaternária de Proteína , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Salmonella typhimurium/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Complexos Multiproteicos , Ribonucleotídeo Redutases/genética , Alinhamento de Sequência
5.
J Biol Chem ; 281(3): 1778-83, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16317005

RESUMO

Ribonucleotide reductase (RNR) is an essential enzyme that provides the cell with a balanced supply of deoxyribonucleoside triphosphates for DNA replication and repair. Mutations that affect the regulation of RNR in yeast and mammalian cells can lead to genetic abnormalities and cell death. We have expressed and purified the components of the RNR system in fission yeast, the large subunit Cdc22p, the small subunit Suc22p, and the replication inhibitor Spd1p. It was proposed (Liu, C., Powell, K. A., Mundt, K., Wu, L., Carr, A. M., and Caspari, T. (2003) Genes Dev. 17, 1130-1140) that Spd1 is an RNR inhibitor, acting by anchoring the Suc22p inside the nucleus during G1 phase. Using in vitro assays with highly purified proteins we have demonstrated that Spd1 indeed is a very efficient inhibitor of fission yeast RNR, but acting on Cdc22p. Furthermore, biosensor technique showed that Spd1p binds to the Cdc22p with a KD of 2.4 microM, whereas the affinity to Suc22p is negligible. Therefore, Spd1p inhibits fission yeast RNR activity by interacting with the Cdc22p. Similar to the situation in budding yeast, logarithmically growing fission yeast increases the dNTP pools 2-fold after 3 h of incubation in the UV mimetic 4-nitroquinoline-N-oxide. This increase is smaller than the increase observed in budding yeast but of the same order as the dNTP pool increase when synchronous Schizosaccharomyces pombe cdc10 cells are going from G1 to S-phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Desoxirribonucleotídeos/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Clonagem Molecular , Replicação do DNA , Escherichia coli/genética , Fase G1 , Cinética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética
6.
Cell ; 112(3): 391-401, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12581528

RESUMO

In eukaryotes, DNA damage elicits a multifaceted response that includes cell cycle arrest, transcriptional activation of DNA repair genes, and, in multicellular organisms, apoptosis. We demonstrate that in Saccharomyces cerevisiae, DNA damage leads to a 6- to 8-fold increase in dNTP levels. This increase is conferred by an unusual, relaxed dATP feedback inhibition of ribonucleotide reductase (RNR). Complete elimination of dATP feedback inhibition by mutation of the allosteric activity site in RNR results in 1.6-2 times higher dNTP pools under normal growth conditions, and the pools increase an additional 11- to 17-fold during DNA damage. The increase in dNTP pools dramatically improves survival following DNA damage, but at the same time leads to higher mutation rates. We propose that increased survival and mutation rates result from more efficient translesion DNA synthesis at elevated dNTP concentrations.


Assuntos
Sobrevivência Celular/genética , Dano ao DNA/genética , Desoxirribonucleosídeos/metabolismo , Células Eucarióticas/enzimologia , Ribonucleotídeo Redutases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , DNA/biossíntese , DNA/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Desoxirribonucleosídeos/genética , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/genética , Retroalimentação Fisiológica/efeitos da radiação , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Mutação/genética , Mutação/efeitos da radiação , Ribonucleotídeo Redutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 277(21): 18574-8, 2002 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-11893751

RESUMO

The ribonucleotide reductase system in Saccharomyces cerevisiae includes four genes (RNR1 and RNR3 encoding the large subunit and RNR2 and RNR4 encoding the small subunit). RNR3 expression, nearly undetectable during normal growth, is strongly induced by DNA damage. Yet an rnr3 null mutant has no obvious phenotype even under DNA damaging conditions, and the contribution of RNR3 to ribonucleotide reduction is not clear. To investigate the role of RNR3 we expressed and characterized the Rnr3 protein. The in vitro activity of Rnr3 was less than 1% of the Rnr1 activity. However, a strong synergism between Rnr3 and Rnr1 was observed, most clearly demonstrated in experiments with the catalytically inactive Rnr1-C428A mutant, which increased the endogenous activity of Rnr3 by at least 10-fold. In vivo, the levels of Rnr3 after DNA damage never reached more than one-tenth of the Rnr1 levels. We propose that heterodimerization of Rnr3 with Rnr1 facilitates the recruitment of Rnr3 to the ribonucleotide reductase holoenzyme, which may be important when Rnr1 is limiting for dNTP production. In complex with inactive Rnr1-C428A, the activity of Rnr3 is controlled by effector binding to Rnr1-C428A. This result indicates cross-talk between the Rnr1 and Rnr3 polypeptides of the large subunit.


Assuntos
Dano ao DNA , DNA Fúngico/genética , Ribonucleotídeo Redutases/metabolismo , Saccharomyces cerevisiae/enzimologia , Regulação Alostérica , Sequência de Aminoácidos , Sequência de Bases , Biopolímeros , Catálise , Primers do DNA , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleotídeo Redutases/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...