Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 80(16): 7799-806, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16873237

RESUMO

Human metapneumovirus (hMPV) is a recently described member of the Paramyxoviridae family/Pneumovirinae subfamily and shares many common features with respiratory syncytial virus (RSV), another member of the same subfamily. hMPV causes respiratory tract illnesses that, similar to human RSV, occur predominantly during the winter months and have symptoms that range from mild to severe cough, bronchiolitis, and pneumonia. Like RSV, the hMPV virus can be subdivided into two genetic subgroups, A and B. With RSV, a single monoclonal antibody directed at the fusion (F) protein can prevent severe lower respiratory tract RSV infection. Because of the high level of sequence conservation of the F protein across all the hMPV subgroups, this protein is likely to be the preferred antigenic target for the generation of cross-subgroup neutralizing antibodies. Here we describe the generation of a panel of neutralizing monoclonal antibodies that bind to the hMPV F protein. A subset of these antibodies has the ability to neutralize prototypic strains of both the A and B hMPV subgroups in vitro. Two of these antibodies exhibited high-affinity binding to the F protein and were shown to protect hamsters against infection with hMPV. The data suggest that a monoclonal antibody could be used prophylactically to prevent lower respiratory tract disease caused by hMPV.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Metapneumovirus/imunologia , Infecções por Paramyxoviridae/prevenção & controle , Infecções Respiratórias/prevenção & controle , Proteínas Virais de Fusão/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/uso terapêutico , Células Cultivadas , Humanos , Infecções Respiratórias/virologia , Proteínas Virais de Fusão/antagonistas & inibidores
2.
Cancer Res ; 63(22): 7907-12, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14633720

RESUMO

The EphA2 receptor tyrosine kinase is overexpressed in many different types of human cancers where it functions as a powerful oncoprotein. Dramatic changes in the subcellular localization and function of EphA2 have also been linked with cancer, and in particular, unstable cancer cell-cell contacts prevent EphA2 from stably binding its ligand on the surface of adjoining cells. This change is important in light of evidence that ligand binding causes EphA2 to transmit signals that negatively regulate tumor cell growth and invasiveness and also induce EphA2 degradation. On the basis of these properties, we have begun to target EphA2 on tumor cells using agonistic antibodies, which mimic the consequences of ligand binding. In our present study, we show that a subset of agonistic EphA2 antibodies selectively bind epitopes on malignant cells, which are not available on nontransformed epithelial cells. We also show that such epitopes arise from differential cell-cell adhesions and that the stable intercellular junctions of nontransformed epithelial cells occlude the binding site for ligand, as well as this subset of EphA2 antibodies. Finally, we demonstrate that antibody targeting of EphA2 decreases tumor cell growth as measured using xenograft tumor models and found that the mechanism of antibody action relates to EphA2 protein degradation in vivo. Taken together, these results suggest new opportunities for therapeutic targeting of the large number of different cancers that express EphA2 in a manner that could minimize potential toxicities to normal cells.


Assuntos
Neoplasias da Mama/imunologia , Epitopos/imunologia , Neoplasias Pulmonares/imunologia , Receptor EphA2/imunologia , Animais , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/farmacologia , Western Blotting , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Comunicação Celular/imunologia , Epitopos/biossíntese , Feminino , Humanos , Imunização Passiva/métodos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Receptor EphA2/agonistas , Receptor EphA2/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...