Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 7(6): 389-93, 2012 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-22659608

RESUMO

Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t(1/2) ≈ 24.2 min) than the parent siRNA (t(1/2) ≈ 6 min).


Assuntos
DNA , Sistemas de Liberação de Medicamentos/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Nanopartículas , Neoplasias Experimentais/tratamento farmacológico , RNA Interferente Pequeno , Animais , DNA/química , DNA/genética , DNA/farmacologia , Feminino , Ácido Fólico/química , Ácido Fólico/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
2.
Mol Ther Nucleic Acids ; 1: e4, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23344621

RESUMO

Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

3.
Nat Biotechnol ; 29(11): 1005-10, 2011 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-21983520

RESUMO

Excessive and prolonged activity of inflammatory monocytes is a hallmark of many diseases with an inflammatory component. In such conditions, precise targeting of these cells could be therapeutically beneficial while sparing many essential functions of the innate immune system, thus limiting unwanted effects. Inflammatory monocytes-but not the noninflammatory subset-depend on the chemokine receptor CCR2 for localization to injured tissue. Here we present an optimized lipid nanoparticle and a CCR2-silencing short interfering RNA that, when administered systemically in mice, show rapid blood clearance, accumulate in spleen and bone marrow, and localize to monocytes. Efficient degradation of CCR2 mRNA in monocytes prevents their accumulation in sites of inflammation. Specifically, the treatment attenuates their number in atherosclerotic plaques, reduces infarct size after coronary artery occlusion, prolongs normoglycemia in diabetic mice after pancreatic islet transplantation, and results in reduced tumor volumes and lower numbers of tumor-associated macrophages.


Assuntos
Inativação Gênica , Inflamação/terapia , Macrófagos/efeitos dos fármacos , Nanopartículas , RNA Interferente Pequeno/uso terapêutico , Receptores CCR2/antagonistas & inibidores , Animais , Aterosclerose/terapia , Glicemia , Diabetes Mellitus/cirurgia , Diabetes Mellitus/terapia , Modelos Animais de Doenças , Sobrevivência de Enxerto/genética , Humanos , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/terapia , Nanopartículas/química , Receptores CCR2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...