Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Gene Med ; 6(12): 1369-81, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15538729

RESUMO

BACKGROUND: One of the major limitations to the use of adeno-associated virus (AAV) vectors for gene therapy has been the difficulty in producing enough vector to supply a clinical trial. More than 20 000 roller bottles may be required to generate AAV by the traditional transient transfection process to treat 50 patients. A scalable AAV producer cell line grown in serum-free media will meet the needs for the manufacture of AAV gene therapeutics. METHODS: A packaging cell line was generated by introducing the AAV rep and cap genes into A549 cells. From this packaging cell line, a number of producer cell lines were generated by infecting the packaging cell with the appropriate AAV vector. Producer cell lines were then adapted to serum-free suspension conditions for growth in bioreactors. RESULTS: We report here the development of six AAV producer cell lines that generate > 10(4) particles/cell. The rAAV vector preparations from these cell lines have physical and functional characteristics similar to rAAV vectors prepared by transient transfection. To enable large-scale production, producer cell lines were adapted to serum-free suspension and we demonstrate production of AAV at the 15 L scale. In addition, vector preparations from these cell lines were shown to be free of wild-type AAV. CONCLUSIONS: AAV producer cell lines can be readily scaled to meet the needs of clinical trials. One 500 L bioreactor of these producer cells can produce the equivalent of 2500 high capacity roller bottles or 25 000 T-175 tissue culture flasks.


Assuntos
Adenoviridae/crescimento & desenvolvimento , Linhagem Celular , Terapia Genética/métodos , Vetores Genéticos , Reatores Biológicos , Ensaios Clínicos como Assunto , Meios de Cultura Livres de Soro , Humanos , Manejo de Espécimes
2.
J Mol Cell Cardiol ; 35(7): 739-48, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12818564

RESUMO

Grafting of saphenous vein (SV) conduits into the arterial circulation triggers a number of adaptive pathological changes characterized by progressive medial thickening, neointima formation and accelerated atheroma. Previous studies have shown that modification of vein graft biology is possible by adenovirus (Ad)-mediated gene transfer, although gene expression is transient. Advancement of vascular gene therapy to the clinic is compromised by the lack of safe and efficient vector systems that provide sustained therapeutic gene delivery to the vasculature. Due to inadequacies of both Ad and adeno-associated virus (AAV) serotype-2 (AAV-2) systems, we have evaluated gene delivery to endothelial cells (ECs) and smooth muscle cells (SMCs) using alternate AAV serotypes and a third-generation vesicular stomatis virus glycoprotein-pseudotyped lentiviral system. Transduction of both primary human SV EC and SMC was lower using all alternate AAV serotypes compared to AAV-2. However, transduction of both cell types by lentivirus was efficient even at clinically relevant exposure times (15 min), was without toxicity and was promoter sensitive. Transduction levels at lower doses were further enhanced with the addition of the surfactant Poloxamer-407 (P-407). Direct comparison with Ad and AAV-2 confirmed the unique potential for this system. Moreover, we constructed and overexpressed the therapeutic gene tissue inhibitor of metalloproteinase-3 (TIMP-3) using lentivirus and demonstrated transgene production comparable to Ad with concomitant blockade of SMC migration and induction of cell death. We have demonstrated for the first time the potential for third-generation lentiviral vectors, but not alternate AAV serotypes, as efficient vascular gene delivery vectors.


Assuntos
Sistema Cardiovascular/metabolismo , Terapia Genética , Vetores Genéticos , Lentivirus , Transdução Genética , Dependovirus , Humanos , Vírus da Estomatite Vesicular Indiana
3.
Hum Gene Ther ; 14(4): 329-39, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12659674

RESUMO

Adenoviral vectors are widely used to express transgenes in vitro and in vivo. A major obstacle to the generation of adenoviral vectors is the manipulation of the large (35 kb) adenoviral genome. We developed a hybrid yeast-bacteria cloning system for the creation of novel adenoviral vectors. The adenovirus 5 (Ad5) genome was cloned into a shuttle vector that contains both yeast and bacterial elements for replication and therefore functions as both a yeast artificial plasmid (YAP) and as a plasmid artificial chromosome (PAC). Any sequence can be introduced into any region of the adenoviral genome via the highly efficient homologous recombination in yeast and then these recombinants are rapidly amplified in bacteria. Adenoviral vectors are generated by introduction of the PAC into the appropriate complementing mammalian cell without the need for plaque purification. Vectors were constructed with deletions in the E1, E3, and/or E4 regions. We have generated more than 100 vectors with a number of different transgenes and regulatory elements. In addition, the YAP/PAC vector was used to capture a DNA fragment encompassing the human factor IX gene, demonstrating the utility of this system to clone and analyze genomic DNA. This novel cloning strategy allows the rapid and versatile construction of adenoviral vectors for gene expression and gene therapy applications.


Assuntos
Adenoviridae/genética , Clonagem Molecular/métodos , Escherichia coli/genética , Vetores Genéticos , Genoma Viral , Genoma , Saccharomyces cerevisiae/genética , Proteínas E1 de Adenovirus/genética , Proteínas E3 de Adenovirus/genética , Proteínas E4 de Adenovirus/genética , Animais , Linhagem Celular , Cromossomos Artificiais de Bacteriófago P1/genética , Cromossomos Artificiais de Levedura/genética , Fator IX/genética , Fator VIII/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transformação Bacteriana , Transgenes
4.
J Virol ; 76(15): 7651-60, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12097579

RESUMO

Gene therapy vectors based on adeno-associated viruses (AAVs) show promise for the treatment of retinal degenerative diseases. In prior work, subretinal injections of AAV2, AAV5, and AAV2 pseudotyped with AAV5 capsids (AAV2/5) showed variable retinal pigmented epithelium (RPE) and photoreceptor cell transduction, while AAV2/1 predominantly transduced the RPE. To more thoroughly compare the efficiencies of gene transfer of AAV2, AAV3, AAV5, and AAV6, we quantified, using stereological methods, the kinetics and efficiency of AAV transduction to mouse photoreceptor cells. We observed persistent photoreceptor and RPE transduction by AAV5 and AAV2 up to 31 weeks and found that AAV5 transduced a greater volume than AAV2. AAV5 containing full-length or half-length genomes and AAV2/5 transduced comparable numbers of photoreceptor cells with similar rates of onset of expression. Compared to AAV2, AAV5 transduced significantly greater numbers of photoreceptor cells at 5 and 15 weeks after surgery (greater than 1,000 times and up to 400 times more, respectively). Also, there were 30 times more genome copies in eyes injected with AAV2/5 than in eyes injected with AAV2. Comparing AAVs with half-length genomes, AAV5 transduced only four times more photoreceptor cells than AAV2 at 5 weeks and nearly equivalent numbers at 15 weeks. The enhancement of transduction was seen at the DNA level, with 50 times more viral genome copies in retinas injected with AAV having short genomes than in retinas injected with AAV containing full-length ones. Subretinal injection of AAV2/6 showed only RPE transduction at 5 and 15 weeks, while AAV2/3 did not transduce retinal cells. We conclude that varying genome length and AAV capsids may allow for improved expression and/or gene transfer to specific cell types in the retina.


Assuntos
Capsídeo , Dependovirus/genética , Genoma Viral , Retina/virologia , Transdução Genética , Animais , Capsídeo/genética , Capsídeo/metabolismo , Dependovirus/patogenicidade , Vetores Genéticos , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras , Epitélio Pigmentado Ocular , Retina/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...