Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Sci Rep ; 14(1): 15598, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971768

RESUMO

Although sequence-based studies show that basal-like features lead to worse prognosis and chemotherapy-resistance compared to the classical subtype in advanced pancreatic ductal adenocarcinoma (PDAC), a surrogate biomarker distinguishing between these subtypes in routine diagnostic practice remains to be identified. We aimed to evaluate the utility of immunohistochemistry (IHC) expression subtypes generated by unsupervised hierarchical clustering based on staining scores of four markers (CK5/6, p63, GATA6, HNF4a) applied to endoscopic ultrasound-guided fine needle aspiration biopsy (EUS-FNAB) materials. EUS-FNAB materials taken from 190 treatment-naïve advanced PDAC patients were analyzed, and three IHC patterns were established (Classical, Transitional, and Basal-like pattern). Basal-like pattern (high co-expression of CK5/6 and p63 with low expression of GATA6 and HNF4a) was significantly associated with squamous differentiation histology (p < 0.001) and demonstrated the worst overall survival among our cohort (p = 0.004). IHC expression subtype (Transitional, Basal vs Classical) was an independent poor prognosticator in multivariate analysis [HR 1.58 (95% CI 1.01-2.38), p = 0.047]. Furthermore, CK5/6 expression was an independent poor prognostic factor in histological glandular type PDAC [HR 2.82 (95% CI 1.31-6.08), p = 0.008]. Our results suggest that IHC expression patterns successfully predict molecular features indicative of the Basal-like subgroup in advanced PDAC. These results provide the basis for appropriate stratification for therapeutic selection and prognostic estimation of advanced PDAC in a simplified manner.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Fator de Transcrição GATA6 , Fator 4 Nuclear de Hepatócito , Imuno-Histoquímica , Neoplasias Pancreáticas , Humanos , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Masculino , Feminino , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Idoso , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/genética , Prognóstico , Queratina-5/metabolismo , Queratina-6/metabolismo , Idoso de 80 Anos ou mais , Adulto , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Fatores de Transcrição , Proteínas Supressoras de Tumor
2.
Clin Cancer Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864854

RESUMO

PURPOSE: Intrahepatic cholangiocarcinoma (IHC) are heterogeneous tumors. The hidden-genome classifier, a supervised machine learning-based algorithm, was used to quantify tumor heterogeneity and improve classification. EXPERIMENTAL DESIGN: A retrospective review of 1370 patients with IHC, extrahepatic cholangiocarcinoma (EHC), gallbladder cancer (GBC), hepatocellular carcinoma (HCC), or biphenotypic tumors was conducted. A hidden-genome model classified 527 IHCs based on genetic similarity to EHC/GBC or HCC. Genetic, histologic, and clinical data were correlated. RESULTS: 410 IHC (78%) had >50% genetic homology with EHC/GBC; 122 (23%) had >90% homology ("biliary-class"), characterized by alterations of KRAS, SMAD4, and CDKN2A loss. 117 IHC (22%) had >50% genetic homology with HCC; 30 (5.7%) had >90% homology ("HCC-class"), characterized by TERT alterations. Patients with biliary- vs. non-biliary-class IHC had median overall survival (OS) of 1 year (95% CI: 0.77, 1.5) vs. 1.8 years (95% CI: 1.6, 2.0) for unresectable disease and 2.4 years (95% CI: 2.1, NR) vs. 5.1 years (95% CI: 4.8, 6.9) for resectable disease. Large-duct-IHC (n=28) was more common in the biliary-class (n=27); HCC-class was comprised mostly of small-duct-IHC (64%, p=0.02). The hidden-genomic classifier predicted OS independent of FGFR2 and IDH1 alterations. By contrast, the histology subtype did not predict OS. CONCLUSIONS: IHC genetics form a spectrum with worse OS for tumors genetically aligned with EHC/GBC. The classifier proved superior to histologic subtypes for predicting OS independent of FGFR2 and IDH1 alterations. These results may explain the differential treatment responses seen in IHC and may direct therapy by help stratifing patients in future clinical trials.

3.
SLAS Discov ; 29(5): 100171, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917882

RESUMO

DNA-encoded small molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, it has been used to identify ligands against targets that are soluble or overexpressed on cell surfaces. Here, we report applying cell-based selection methods to profile surfaces of mouse C2C12 myoblasts and myotube cells in an unbiased, target agnostic manner. A panel of on-DNA compounds were identified and confirmed for cell binding selectivity. We optimized the cell selection protocol and employed a novel data analysis method to identify cell selective ligands against a panel of human B and T lymphocytes. We discuss the generality of using this workflow for DNA encoded small molecule library selection and data analysis against different cell types, and the feasibility of applying this method to profile cell surfaces for biomarker and target identification.

4.
Cell Rep ; 43(5): 114236, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38758650

RESUMO

The tumor microenvironment (TME) presents cells with challenges such as variable pH, hypoxia, and free radicals, triggering stress responses that affect cancer progression. In this study, we examine the stress response landscape in four carcinomas-breast, pancreas, ovary, and prostate-across five pathways: heat shock, oxidative stress, hypoxia, DNA damage, and unfolded protein stress. Using a combination of experimental and computational methods, we create an atlas of stress responses across various types of carcinomas. We find that stress responses vary within the TME and are especially active near cancer cells. Focusing on the non-immune stroma we find, across tumor types, that NRF2 and the oxidative stress response are distinctly activated in immune-regulatory cancer-associated fibroblasts and in a unique subset of cancer-associated pericytes. Our study thus provides an interactome of stress responses in cancer, offering ways to intersect survival pathways within the tumor, and advance cancer therapy.


Assuntos
Estresse Oxidativo , Microambiente Tumoral , Humanos , Células Estromais/metabolismo , Células Estromais/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Feminino , Dano ao DNA , Resposta a Proteínas não Dobradas , Masculino
5.
Cancer Res ; 84(7): 947-949, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558127
6.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562717

RESUMO

Driver gene mutations can increase the metastatic potential of the primary tumor1-3, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of SMAD4 - a transcriptional effector of TGFß signaling - which is a hallmark of multiple gastrointestinal malignancies4,5. SMAD4 inactivation mediates TGFß's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis6-14. To determine whether metastatic tumors remain dependent on SMAD4 inactivation, we developed a mouse model of pancreatic ductal adenocarcinoma (PDAC) that enables Smad4 depletion in the pre-malignant pancreas and subsequent Smad4 reactivation in established metastases. As expected, Smad4 inactivation facilitated the formation of primary tumors that eventually colonized the liver and lungs. By contrast, Smad4 reactivation in metastatic disease had strikingly opposite effects depending on the tumor's organ of residence: suppression of liver metastases and promotion of lung metastases. Integrative multiomic analysis revealed organ-specific differences in the tumor cells' epigenomic state, whereby the liver and lungs harbored chromatin programs respectively dominated by the KLF and RUNX developmental transcription factors, with Klf4 depletion being sufficient to reverse Smad4's tumor-suppressive activity in liver metastases. Our results show how epigenetic states favored by the organ of residence can influence the function of driver genes in metastatic tumors. This organ-specific gene-chromatin interplay invites consideration of anatomical site in the interpretation of tumor genetics, with implications for the therapeutic targeting of metastatic disease.

7.
Nature ; 626(8000): 864-873, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326607

RESUMO

Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.


Assuntos
Proteínas Inibidoras de Diferenciação , Células de Kupffer , Neoplasias , Animais , Humanos , Camundongos , Células da Medula Óssea/citologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Inibidoras de Diferenciação/deficiência , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células de Kupffer/citologia , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/imunologia , Fígado/patologia , Ativação de Macrófagos , Proteínas de Neoplasias , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fagocitose
8.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328106

RESUMO

Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however few studies have investigated its role in neurodegenerative processes such as Alzheimer's Disease (AD). Here we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in human, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.

9.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352348

RESUMO

Introduction: Metastatic cancer affects millions of people worldwide annually and is the leading cause of cancer-related deaths. Most patients with metastatic disease are not eligible for surgical resection, and current therapeutic regimens have varying success rates, some with 5-year survival rates below 5%. Here we test the hypothesis that metastatic cancer can be genetically targeted by exploiting single base substitution mutations unique to individual cells that occur as part of normal aging prior to transformation. These mutations are targetable because ~10% of them form novel tumor-specific "NGG" protospacer adjacent motif (PAM) sites targetable by CRISPR-Cas9. Methods: Whole genome sequencing was performed on five rapid autopsy cases of patient-matched primary tumor, normal and metastatic tissue from pancreatic ductal adenocarcinoma decedents. CRISPR-Cas9 PAM targets were determined by bioinformatic tumor-normal subtraction for each patient and verified in metastatic samples by high-depth capture-based sequencing. Results: We found that 90% of PAM targets were maintained between primary carcinomas and metastases overall. We identified rules that predict PAM loss or retention, where PAMs located in heterozygous regions in the primary tumor can be lost in metastases (private LOH), but PAMs occurring in regions of loss of heterozygosity (LOH) in the primary tumor were universally conserved in metastases. Conclusions: Regions of truncal LOH are strongly retained in the presence of genetic instability, and therefore represent genetic vulnerabilities in pancreatic adenocarcinomas. A CRISPR-based gene therapy approach targeting these regions may be a novel way to genetically target metastatic cancer.

10.
NPJ Precis Oncol ; 8(1): 34, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355834

RESUMO

Reversion mutations that restore wild-type function of the BRCA gene have been described as a key mechanism of resistance to Poly(ADP-ribose) polymerase (PARP) inhibitor therapy in BRCA-associated cancers. Here, we report a case of a patient with metastatic castration-resistant prostate cancer (mCRPC) with a germline BRCA2 mutation who developed acquired resistance to PARP inhibition. Extensive genomic interrogation of cell-free DNA (cfDNA) and tissue at baseline, post-progression, and postmortem revealed ten unique BRCA2 reversion mutations across ten sites. While several of the reversion mutations were private to a specific site, nine out of ten tumors contained at least one mutation, suggesting a powerful clonal selection for reversion mutations in the presence of therapeutic pressure by PARP inhibition. Variable cfDNA shed was seen across tumor sites, emphasizing a potential shortcoming of cfDNA monitoring for PARPi resistance. This report provides a genomic portrait of the temporal and spatial heterogeneity of prostate cancer under the selective pressure of a PARP inhibition and exposes limitations in the current strategies for detection of reversion mutations.

11.
JCO Precis Oncol ; 8: e2300534, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394469

RESUMO

PURPOSE: Intrahepatic cholangiocarcinoma (ICCA) is characterized by significant phenotypic and clinical heterogeneities and poor response to systemic therapy, potentially related to underlying heterogeneity in oncogenic alterations. We aimed to characterize the genomic heterogeneity between primary tumors and advanced disease in patients with ICCA. METHODS: Biopsy-proven CCA specimens (primary tumor and paired advanced disease [metastatic disease, progressive disease on systemic therapy, or postoperative recurrence]) from two institutions were subjected to targeted next-generation sequencing. Overall concordance (oncogenic driver mutations, copy number alterations, and fusion events) and mutational concordance (only oncogenic mutations) were compared across paired samples. A subgroup analysis was performed on the basis of exposure to systemic therapy. Patients with extrahepatic CCA (ECCA) were included as a comparison group. RESULTS: Sample pairs from 65 patients with ICCA (n = 54) and ECCA (n = 11) were analyzed. The median time between sample collection was 19.6 months (range, 2.7-122.9). For the entire cohort, the overall oncogenic concordance was 49% and the mutational concordance was 62% between primary and advanced disease samples. Subgroup analyses of ICCA and ECCA revealed overall/mutational concordance rates of 47%/58% and 60%/84%, respectively. Oncogenic concordance was similarly low for pairs exposed to systemic therapy between sample collections (n = 50, 53% overall, 68% mutational). In patients treated with targeted therapy for IDH1/2 alterations (n = 6) or FGFR2 fusions (n = 3), there was 100% concordance between the primary and advanced disease specimens. In two patients, FGFR2 (n = 1) and IDH1 (n = 1) alterations were detected de novo in the advanced disease specimens. CONCLUSION: The results reflect a high degree of heterogeneity in ICCA and argue for reassessment of the dominant driver mutations with change in disease status.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/tratamento farmacológico , Mutação , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia
13.
Genome Biol ; 24(1): 272, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037115

RESUMO

A tumor contains a diverse collection of somatic mutations that reflect its past evolutionary history and that range in scale from single nucleotide variants (SNVs) to large-scale copy-number aberrations (CNAs). However, no current single-cell DNA sequencing (scDNA-seq) technology produces accurate measurements of both SNVs and CNAs, complicating the inference of tumor phylogenies. We introduce a new evolutionary model, the constrained k-Dollo model, that uses SNVs as phylogenetic markers but constrains losses of SNVs according to clusters of cells. We derive an algorithm, ConDoR, that infers phylogenies from targeted scDNA-seq data using this model. We demonstrate the advantages of ConDoR on simulated and real scDNA-seq data.


Assuntos
Neoplasias , Humanos , Animais , Filogenia , Neoplasias/genética , Mutação , Algoritmos , Análise de Sequência de DNA , Aves/genética , Variações do Número de Cópias de DNA
14.
Cancer Res ; 83(22): 3796-3812, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37812025

RESUMO

Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE: The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/genética , Sequenciamento Completo do Genoma , Genômica , Neoplasias Ósseas/genética , Recidiva , Variações do Número de Cópias de DNA , Mutação
15.
Cancer Res ; 83(20): 3478-3491, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37526524

RESUMO

Understanding the rewired metabolism underlying organ-specific metastasis in breast cancer could help identify strategies to improve the treatment and prevention of metastatic disease. Here, we used a systems biology approach to compare metabolic fluxes used by parental breast cancer cells and their brain- and lung-homing derivatives. Divergent lineages had distinct, heritable metabolic fluxes. Lung-homing cells maintained high glycolytic flux despite low levels of glycolytic intermediates, constitutively activating a pathway sink into lactate. This strong Warburg effect was associated with a high ratio of lactate dehydrogenase (LDH) to pyruvate dehydrogenase (PDH) expression, which correlated with lung metastasis in patients with breast cancer. Although feature classification models trained on clinical characteristics alone were unable to predict tropism, the LDH/PDH ratio was a significant predictor of metastasis to the lung but not to other organs, independent of other transcriptomic signatures. High lactate efflux was also a trait in lung-homing metastatic pancreatic cancer cells, suggesting that lactate production may be a convergent phenotype in lung metastasis. Together, these analyses highlight the essential role that metabolism plays in organ-specific cancer metastasis and identify a putative biomarker for predicting lung metastasis in patients with breast cancer. SIGNIFICANCE: Lung-homing metastatic breast cancer cells express an elevated ratio of lactate dehydrogenase to pyruvate dehydrogenase, indicating that ratios of specific metabolic gene transcripts have potential as metabolic biomarkers for predicting organ-specific metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Segunda Neoplasia Primária , Humanos , Feminino , Neoplasias da Mama/patologia , L-Lactato Desidrogenase/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores , Pulmão/patologia , Lactatos , Piruvatos , Melanoma Maligno Cutâneo
16.
Sci Transl Med ; 15(706): eabq0476, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37494469

RESUMO

T cells are the central drivers of many inflammatory diseases, but the repertoire of tissue-resident T cells at sites of pathology in human organs remains poorly understood. We examined the site-specificity of T cell receptor (TCR) repertoires across tissues (5 to 18 tissues per patient) in prospectively collected autopsies of patients with and without graft-versus-host disease (GVHD), a potentially lethal tissue-targeting complication of allogeneic hematopoietic cell transplantation, and in mouse models of GVHD. Anatomic similarity between tissues was a key determinant of TCR repertoire composition within patients, independent of disease or transplant status. The T cells recovered from peripheral blood and spleens in patients and mice captured a limited portion of the TCR repertoire detected in tissues. Whereas few T cell clones were shared across patients, motif-based clustering revealed shared repertoire signatures across patients in a tissue-specific fashion. T cells at disease sites had a tissue-resident phenotype and were of donor origin based on single-cell chimerism analysis. These data demonstrate the complex composition of T cell populations that persist in human tissues at the end stage of an inflammatory disorder after lymphocyte-directed therapy. These findings also underscore the importance of studying T cell in tissues rather than blood for tissue-based pathologies and suggest the tissue-specific nature of both the endogenous and posttransplant T cell landscape.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Linfócitos T/patologia , Doença Enxerto-Hospedeiro/patologia , Receptores de Antígenos de Linfócitos T
17.
J Mol Cell Biol ; 15(6)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37327088

RESUMO

Chemoresistance is a primary cause of treatment failure in pancreatic cancer. Identifying cell surface markers specifically expressed in chemoresistant cancer cells (CCCs) could facilitate targeted therapies to overcome chemoresistance. We performed an antibody-based screen and found that TRA-1-60 and TRA-1-81, two 'stemness' cell surface markers, are highly enriched in CCCs. Furthermore, TRA-1-60+/TRA-1-81+ cells are chemoresistant compared to TRA-1-60-/TRA-1-81- cells. Transcriptome profiling identified UGT1A10, shown to be both necessary and sufficient to maintain TRA-1-60/TRA-1-81 expression and chemoresistance. From a high-content chemical screen, we identified Cymarin, which downregulates UGT1A10, eliminates TRA-1-60/TRA-1-81 expression, and increases chemosensitivity both in vitro and in vivo. Finally, TRA-1-60/TRA-1-81 expression is highly specific in primary cancer tissue and positively correlated with chemoresistance and short survival, which highlights their potentiality for targeted therapy. Therefore, we discovered a novel CCC surface marker regulated by a pathway that promotes chemoresistance, as well as a leading drug candidate to target this pathway.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica
18.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292765

RESUMO

Overexpression of repetitive elements is an emerging hallmark of human cancers 1 . Diverse repeats can mimic viruses by replicating within the cancer genome through retrotransposition, or presenting pathogen-associated molecular patterns (PAMPs) to the pattern recognition receptors (PRRs) of the innate immune system 2-5 . Yet, how specific repeats affect tumor evolution and shape the tumor immune microenvironment (TME) in a pro- or anti-tumorigenic manner remains poorly defined. Here, we integrate whole genome and total transcriptome data from a unique autopsy cohort of multiregional samples collected in pancreatic ductal adenocarcinoma (PDAC) patients, into a comprehensive evolutionary analysis. We find that more recently evolved S hort I nterspersed N uclear E lements (SINE), a family of retrotransposable repeats, are more likely to form immunostimulatory double-strand RNAs (dsRNAs). Consequently, younger SINEs are strongly co-regulated with RIG-I like receptor associated type-I interferon genes but anti-correlated with pro-tumorigenic macrophage infiltration. We discover that immunostimulatory SINE expression in tumors is regulated by either L ong I nterspersed N uclear E lements 1 (LINE1/L1) mobility or ADAR1 activity in a TP53 mutation dependent manner. Moreover, L1 retrotransposition activity tracks with tumor evolution and is associated with TP53 mutation status. Altogether, our results suggest pancreatic tumors actively evolve to modulate immunogenic SINE stress and induce pro-tumorigenic inflammation. Our integrative, evolutionary analysis therefore illustrates, for the first time, how dark matter genomic repeats enable tumors to co-evolve with the TME by actively regulating viral mimicry to their selective advantage.

20.
Nat Genet ; 55(6): 1022-1033, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169874

RESUMO

Patients with high-risk neuroblastoma generally present with widely metastatic disease and often relapse despite intensive therapy. As most studies to date focused on diagnosis-relapse pairs, our understanding of the genetic and clonal dynamics of metastatic spread and disease progression remain limited. Here, using genomic profiling of 470 sequential and spatially separated samples from 283 patients, we characterize subtype-specific genetic evolutionary trajectories from diagnosis through progression and end-stage metastatic disease. Clonal tracing timed disease initiation to embryogenesis. Continuous acquisition of structural variants at disease-defining loci (MYCN, TERT, MDM2-CDK4) followed by convergent evolution of mutations targeting shared pathways emerged as the predominant feature of progression. At diagnosis metastatic clones were already established at distant sites where they could stay dormant, only to cause relapses years later and spread via metastasis-to-metastasis and polyclonal seeding after therapy.


Assuntos
Recidiva Local de Neoplasia , Neuroblastoma , Humanos , Recidiva Local de Neoplasia/genética , Neuroblastoma/genética , Evolução Clonal , Mutação , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...